
Chapter 7ConclusionsThe analyses of the preceding chapters are designed to investigate styles of convec-tion that may arise in the Earth's mantle because low surface temperatures createa lithosphere that is dense, allowing it to drive convection, but also strong, caus-ing it resist convective 
ow. Chapters 2 and 3 show that convective instability atshort wavelengths should be capable of removing the basal portion of the mantlelithosphere, but that the amount and rate of removal depends on the details of howviscosity and density vary with depth. This type of convection is often describedas occurring beneath a \stagnant lid" because it does not involve the cold, dense,material at the surface that is too sti� to 
ow. For the entire thickness of the mantlelithosphere to participate in convection, it must subduct into the mantle interior,a process that requires the entire lithosphere to experience a bending deformation.Chapter 4 examines the bending of a viscous subducting lithosphere and shows thatsubducting plates need not be particularly weak for subduction to occur. In fact, itis possible to demonstrate mantle-scale 
ow with mobile surface plates even if this
ow is primarily resisted by the bending of plates in subduction zones (Chapter 6).For the Earth, this style of convection requires an e�ective viscosity for the bendinglithosphere of about 1023 Pa s (Chapters 5 and 6), a value that is only about twoorders of magnitude sti�er than estimates for the average viscosity of the underly-ing mantle. Lithospheric viscosity of this magnitude is certainly possible given theextreme temperature-dependence of mantle viscosity.231



The two types of convection studied here, convective instability beneath a \stag-nant lid" and plate-like 
ow with subduction zones that are \strong," are controlledlargely by the strength of the mantle lithosphere. As a result, lithospheric strengthmay be a fundamental property of convection in the mantle, controlling not onlythe style of convection, but also the rate at which it occurs. Yet, the mechanicalproperties that apply for lithosphere deformation, either at the lithospheric base orwithin a subduction zone, are di�cult to determine. For example, the extreme tem-perature dependence of mantle viscosity observed in the laboratory suggests that thelithosphere's cold temperatures should force convection to occur beneath a stagnantlid, but mobile plates are observed on Earth. Thus, some process must cause sub-duction zones to be weaker than plate interiors. Obvious candidates include brittlefracture, which is observed within subducting plates by the seismicity it produces, theweakening e�ects of water or other volatiles, and various other non-linear constitutiverelations that cause rock strength to decrease as strain-rates increase. Although theseweakening e�ects can be observed experimentally, it is di�cult to extrapolate labora-tory results to the length scales, stresses, and strain-rates appropriate for subduction.In determining an expression for the energy dissipated by a bending subductingplate, the analysis of Chapter 4 uses a viscous rheology for the plate and assumes thatany weakening e�ects of nonlinear behavior can be grouped into an \e�ective" valuefor this viscosity (Chapter 4). Even if such weakening mechanisms are important, thisassumption should be valid for a plate with a given thickness because the e�ectivevalue for viscosity can be de�ned as the one that would produce the proper amountof viscous dissipation if a Newtonian 
ow law were applicable. This assumption maybreak down, however, when this analysis is applied to plates of varying thickness, asit is in Chapters 5 and 6. In particular, the various weakening mechanisms mightbe expected to become more important for thicker plates, because the stresses andstrain-rates associated with bending are larger for a thicker plate. Thus, a 
ow lawwith a maximum yield stress or some other weakening mechanism could cause thetotal amount of energy that a bending subducting plate can dissipate to be limited.Because an excessively large amount of bending dissipation is shown here to cause232



convection beneath a stagnant lid, such mechanisms could be essential for generatingsubduction and plate tectonics. As a result, it would be useful to include such rheo-logical laws in future models of subduction zone deformation. Such an e�ort wouldrequire the determination of more appropriate expressions for the amount of energydissipated by a bending slab. This should require not only a better understandingof the rheology that applies for large, rapidly deforming regions such as subductionzones, but also a better understanding of the \details" of how subducting plates de-form. This understanding can be partially achieved in the laboratory, but probablyalso requires the development of new ways of using surface observations to constrainnumerical models.The analysis of Chapter 4 shows that for a plate with Newtonian viscosity, thebending resistance depends on the cube of a plate's thickness as it subducts. Thus,this thickness could also be an essential quantity that determines whether the bendingresistance at subduction zones is unimportant, controls plate velocities, or stops themaltogether in the case \stagnant lid" convection. As shown in Chapter 6, small-scaleconvection, possibility facilitated by the presence of a low-viscosity asthenosphere,may remove material at the base of the oceanic lithosphere, and thus could limitthe subducting plate thickness. In addition, because plates thicken as they cool,the processes that determine the age of plates at the time of subduction shouldalso a�ect their thickness. If, for example, plates were limited to the size of theCocos plate, the subduction zone resistance would be small because plates would nothave time to grow thick. Thus, small-scale processes such as subduction initiationor convective instability, which should be important for local deformation such asmountain building, could also profoundly in
uence mantle-scale convective processesassociated with plate motions and the thermal evolution of the Earth.In addition to plate bending at subduction zones and small-scale instability be-neath plates, the lithosphere may deform in other ways that in
uence mantle-scaleconvection. For example, although the e�ects of transform faults are not studied here,such faults involve potentially strong parts of the oceanic plate, are comparable inlength to subduction zones, and accommodate signi�cant motion along their length.233



As a result, the energy dissipated by transform faults may, like subduction zones, beimportant to the mantle's energy budget. If this is the case, transform faults couldexert a signi�cant resisting in
uence on plate motions, and thus may be as importantas subduction zones in in
uencing mantle convection. Other regions, such as ridgesand continental lithosphere, also exhibit interesting and important styles of localizeddeformation that should also dissipate energy, and thus exert a potentially importantin
uence on convection in the mantle as a whole.Because convection in the Earth's mantle may depend on small-scale processesassociated with the \details" of how the lithosphere deforms, it is important to obtaina better understanding of these deformation processes. This thesis demonstratesthat one way to assess the global importance of local-scale processes is to studythem in a local model, as is done here for subduction and convective instabilitybeneath continental lithosphere. Such studies can provide insight into the relevancyof these processes to larger-scale convection, and could help constrain lithosphericproperties, particularly if they yield predictions that can be tested by geological orseismological observables. Even if they are important globally, small-scale processesneed not be adequately resolved in large-scale convection models. Instead, methodsof parameterizing the e�ect of these process in large-scale models can provide ane�cient method for testing their e�ects on convection. An energy-balance method forincluding the bending deformation of a subducting plate within a large-scale modelof convection is demonstrated here, as is a method for parameterizing the e�ectssmall-scale convection beneath the oceanic lithosphere (Chapter 6). In summary, ane�cient way of studying the global-scale e�ects of small-scale processes of lithospheredeformation is to use local models to gain insight into these processes, and thento develop methods for including their essential aspects within the framework of alarger-scale convection model.
234
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