
Chapter 2Convective Instability of aBoundary Layer withTemperature- andStrain-Rate-Dependent Viscosityin Terms of `Available Buoyancy'Published in Geophysical Journal International by C. P. Conrad and P. Molnar, 139,51-68, 1999. Copyright by the Royal Astronomical Society.Abstract. Cold mantle lithosphere is gravitationally unstable with respect to thehotter buoyant asthenosphere beneath it, leading to the possibility that the lowerpart of the mantle lithosphere could sink into the mantle in convective downwelling.Such instabilities are driven by the negative thermal buoyancy of the cold lithosphereand retarded largely by viscous stress in the lithosphere. Because of the temperaturedependence of viscosity, the coldest, and therefore densest, parts of the lithosphere areunavailable for driving the instability because of their strength. By comparing theoryand the results of a �nite element representation of a cooling lithosphere, we showthat for a Newtonian 
uid, the rate of exponential growth of an instability should beapproximately proportional to the integral over the depth of the lithosphere of the19



ratio of thermal buoyancy to viscosity, both of which are functions of temperature,and thus depth. We term this quantity \available buoyancy" because it quanti�esthe buoyancy of material su�ciently weak to 
ow, and therefore available for drivingconvective downwelling. For non-Newtonian viscosity with power law exponent nand temperature-dependent pre-exponential factor B, the instabilities grow super-exponentially, as described by Houseman and Molnar [1997], and the appropriatetime scale is given by the integral of the nth power of the ratio of the thermalbuoyancy to B. The scaling by the \available buoyancy" thus o�ers a method ofdetermining the time scale for the growth of perturbations to an arbitrary temperaturepro�le, and a given dependence of viscosity on both temperature and strain rate. Thistime scale can be compared to the one relevant for the smoothing of temperatureperturbations by the di�usion of heat, allowing us to de�ne a parameter, similarto a Rayleigh number, that describes a given temperature pro�le's tendency towardconvective instability. Like the Rayleigh number, this parameter depends on the cubeof the thickness of a potentially unstable layer; therefore, mechanical thickening of alayer should substantially increase its degree of convective instability, and could causestable lithosphere to become convectively unstable on short time scales. We estimatethat convective erosion will, in 10 million years, reduce a layer thickened by a factorof two to a thickness only 20 to 50% greater than its pre-thickened value. Thickeningfollowed by convective instability may lead to a net thinning of a layer if thickening alsoenhances the amplitude of perturbations to the layer's lateral temperature structure.For the mantle lithosphere, the resulting in
ux of hot asthenosphere could result inrapid surface uplift and volcanism.2.1 IntroductionThe Earth's lithosphere is both denser and stronger than the underlying astheno-sphere, and thus provides the negative buoyancy needed to drive convection in themantle while at the same time signi�cantly resisting these convective motions [e.g,Solomatov, 1995]. As a result, the lithosphere in
uences the patterns and scales of20



convection that occur in the mantle. For example, Jaupart and Parsons [1985] �ndthat the length scale of convection depends critically on the viscosity contrast betweenthe boundary layer and the underlying 
uid. For intermediate viscosity contrasts, thestrength of the upper boundary layer causes convection to occur at wavelengths largerthan those expected for an isoviscous 
uid, which could explain the explain the ex-istence of long-wavelength plates on the Earth [e.g, Davies, 1988]. If the viscositycontrast is large, deformation of the boundary layer becomes su�ciently di�cult thatit can not participate in convection. In this case, short-wavelength instabilities, ofthe type described by Howard [1964] and observed in the laboratory by Davaille andJaupart [1993], develop beneath a \rigid lid." These convective downwellings couldmanifest themselves in the Earth as the downwelling of the lower, weaker, part of themantle lithosphere into the underlying asthenosphere.Convective removal of cold mantle lithosphere and its replacement by hot astheno-sphere could manifest itself at the surface as rapid surface uplift followed by eventualextension [e.g., Bird, 1979; England and Houseman, 1989; Houseman and Molnar,1997; Molnar, England, and Martinod, 1993; Neil and Houseman, 1999]. This se-quence of events has been inferred for several mountain belts [Houseman and Molnar,1997]. For example, the Tibetan plateau is thought to have undergone rapid upliftabout 8 million years ago in response to convective removal of mantle lithosphere,triggered by mechanical thickening [e.g., Harrison et al., 1992; Molnar, England, andMartinod, 1993].Thickening of the mantle lithosphere by horizontal shortening can enhance thegravitational instability in several ways. First, thickening forces cold lithospheredownward into the hot asthenosphere, increasing the mass excess of the thickened re-gion. [e.g., Fleitout and Froidevaux, 1982; Houseman, McKenzie and Molnar, 1981].Second, horizontal shortening could generate large amplitude perturbations to thebackground temperature structure of the lithosphere through nonuniform thickeningor folding of the lithosphere [e.g., Bassi and Bonnin, 1988; Fletcher and Hallet, 1983;Ricard and Froidevaux, 1986; Zuber, Parmentier, and Fletcher, 1986]. Finally, ifthe lithosphere weakens with increasing strain rate, as is expected for mantle rocks21



with non-Newtonian viscosity, horizontal shortening can decrease the strength of thelithosphere and thus enhance its potential for convective instability [Molnar, House-man, and Conrad, 1998]. Thus, horizontal shortening could play an important rolein generating convective instabilities in the lithosphere.The degree to which the mantle lithosphere can become convectively unstabledepends primarily on its density and viscosity structure. Because of the temperaturedependence of mantle viscosity, the coldest, and therefore densest, part of the mantlelithosphere is also the most viscous (Figure 2.1). As a result, the gravitationallymost unstable material in the lithosphere may be unavailable for driving a convectiveinstability because of its strength. The bottom part of the mantle lithosphere iswarmer, and therefore weaker, than the material that overlies it, but its warmth alsomakes it less dense, and therefore less prone to instability. Thus, low temperaturemakes lithospheric rock both dense and strong, with the former driving and thelatter retarding an instability. As a result, the generation of a convective instability isdetermined by the lithosphere's temperature structure and the details of how viscosityand density depend on temperature. Because neither the temperature pro�le of thelithosphere nor its a�ect on viscosity are well known, it is di�cult to predict whetherconvective instabilities can, in fact, grow in the lithosphere.If di�usion of heat is ignored, the convective instability can be approximated asa Rayleigh-Taylor instability in which a dense layer overlies a less dense layer in agravitational �eld [e.g, Chandrasekhar, 1961]. Gravity acting on perturbations tothis unstable strati�ed density structure will cause these perturbations to grow, butagainst resisting forces due to the viscous strength of the layers. As the perturbationgrows, the buoyancy forces increase, causing the instability to grow at a faster rate.For Newtonian viscosity, the amplitude of the instability initially grows exponentiallywith time [e.g, Chandrasekhar, 1961]. For non-Newtonian, strain-rate-dependent,viscosity, the instability grows super-exponentially because the e�ective viscosity ofthe 
uid decreases as amplitudes, and thus strain rates, increase [Canright and Mor-ris, 1993; Houseman and Molnar, 1997]. A few studies [e.g. Conrad and Molnar,1997; Molnar, Houseman and Conrad, 1998] have shown that exponential or super-22
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)Figure 2.1: A cartoon showing the approximate variation of density (left) and viscosity(right) with depth in a boundary layer, analogous to the lithosphere. Both are theresult of the variation of temperature with depth, and are given for an error-functiontemperature pro�le (top) and a linear temperature pro�le (bottom), which are thetwo initial temperature pro�les studied in the numerical calculations performed here.Viscosity, which varies with temperature according to (2:43), where � = B=2, is shownrelative to that of the deep 
uid (asthenosphere). Plots for di�erent �(z) are shownby r, which is the ratio of surface viscosity to mantle viscosity. Thus, r = 1 representsthe isoviscous case. 23



exponential growth rates depend critically on how viscosity varies across a layer.By combining the analysis of these previous studies with a heuristic analysis of thegrowth of an instability, we develop a general scaling law that enables us to estimatethe growth rate of an instability from its initial temperature and viscosity structures.The Rayleigh-Taylor analysis ignores the e�ects of the di�usion of heat. In a fullconvective instability, density perturbations are created by horizontal temperaturegradients. If viscous forces are su�ciently strong, the rate at which perturbationsto the temperature structure grow could be slowed to the point at which they areeliminated by thermal di�usion. If this occurs, growth of the instability stops, andthe thermal structure is convectively stable. Lateral di�usion of heat diminishesshort wavelength instabilities faster than longer ones, so its e�ects should decreasewith increasing wavelength. By comparing growth rates obtained by analogy to theRayleigh-Taylor instability to the rates at which temperature perturbations decay, weshow that we can determine whether a given temperature pro�le will be convectivelyunstable for a given wavelength and temperature dependence of viscosity. We verifythis using numerical solutions to the basic equations for convection, for both New-tonian and non-Newtonian rheology, and allowing for �nite amplitude instabilities.Although we do not directly include horizontal shortening in our calculations, wewill show that mechanical thickening of the lithosphere can cause it to become moreconvectively unstable, by increasing the amount of negatively buoyant material thatcan contribute to an instability and by diminishing the retarding e�ects of thermaldi�usion. Thus, we present another mechanism by which convective instability isenhanced by horizontal shortening, supporting the prediction that convective insta-bilities are most likely to occur where the mantle lithosphere has been signi�cantlythickened.2.2 TheoryWe begin our analysis of the convective instability of the lithosphere by exploiting asimple analysis of the Rayleigh-Taylor instability, building upon the linear analysis24



presented by Chandrasekhar [1961], and considered further by Conrad and Molnar[1997] and Houseman and Molnar [1997]. This analysis recognizes that lithospherictemperatures increase much more rapidly with depth than the adiabatic pro�le andthus generate a density structure that can become unstable if perturbations to it areallowed to grow.The deformation of a 
uid is described by a strain rate, _�ij, which is de�ned interms of the components of velocity, ui:_�ij = 12  @ui@xj + @uj@xi! (2.1)The 
ow �eld is incompressible: _�ii = @ui@xi = 0 (2.2)In a viscous 
uid, 
ow occurs to balance viscous stresses and gravitational bodyforces: @�ij@xj � �g�iz = 0 (2.3)where g is the gravitational acceleration, � is density, �ij is the Kronecker delta, andwe ignore inertial terms. The stress component, �ij, can be separated into pressure,p, and deviatoric stress, �ij: �ij = �p�ij + �ij (2.4)We assume a nonlinear relationship between deviatoric stress, �ij, and strain rate, _�ij,of: �ij = B _E( 1n�1) _�ij (2.5)whereB is a rheological parameter, n is a power law exponent, and _E2 = (1=2)Pi;j _�ij �_�ij is the second invariant of the strain-rate tensor. Mantle rocks are thought to deformby dislocation 
ow of olivine in the lithosphere, which can be described using (2:5)where n is about 3 to 3.5 [e.g., Kohlstedt, Evans, and Mackwell, 1995]. It is useful to25



relate stress directly to strain rate as:�ij = 2� _�ij (2.6)where e�ective viscosity, �, depends on strain rate according to:� = B2 _E( 1n�1) (2.7)If n = 1 for Newtonian viscosity, the material exhibits a linear relationship betweenstress and strain rate, and � = B=2 is a constant.2.2.1 Review of Previous StudiesIf viscosity is Newtonian (n = 1), perturbations to an unstable density structuregrow exponentially with time [e.g., Chandrasekhar, 1961; Conrad and Molnar, 1997].Thus, if Z is the magnitude of a sinusoidal perturbation in vertical displacement, andw = @Z=@t is the downward velocity, both grow with the exponential growth rate q,as given by: dwdt = qw and dZdt = qZ (2.8)where q can be expressed as a function of the material properties of the 
uid:q = ��gh2� q00 (2.9)Here �� is the density di�erence across the unstable portion of the layer, h is atypical length scale associated the thickness of this layer, and � is the Newtonianviscosity at the bottom of the layer. The dimensionless growth rate, q00, is a functionof the variation of both density and viscosity with depth, and of the wavelength ofthe perturbation.A density instability in a 
uid with non-Newtonian viscosity (n > 1) grows super-exponentially, as described by Canright and Morris [1993] and Houseman and Molnar[1997]. As the amplitude of a growing instability increases, strain rates also increase,26



so the e�ective viscosity �, as given by (2:7), decreases. Houseman and Molnar [1997]suggest approximating _Ezz � w=h in (2:7) to de�ne a time-varying e�ective viscosityto be used to de�ne � in (2:9). Then, with such a de�nition for q in (2:9) insertedinto (2:8), they obtain an expression for super-exponential growth:w = �C 00�n� 1n � ��gB (h)(1=n) (tb � t)�( n1�n) (2.10)where tb is the time at which velocity becomes in�nite, at which point the instabilitymust be detached from the dense layer, and C 00 is a dimensionless measure of the rateof growth, equivalent to q00 and dependent on the variation of density and B withdepth, and on the wavelength of the perturbation. Houseman and Molnar [1997]suggest the following nondimensionalization of time and length:t00 = t ��ghB !n and z00 = zh (2.11)which reduces (2:10) to: w00 = �C 00�n� 1n � (t00b � t00)�( n1�n ) (2.12)If n = 1 for Newtonian viscosity, using (2:11) to make (2:8) dimensionless yieldsdw00=dt00 = q00w00. Because the dimensionless time scale of (2:11) contains no informa-tion about the variation of density or viscosity with depth, this information must beincorporated into q00 or C 00.2.2.2 Available BuoyancyBecause both q00 and C 00 depend on the details of how density and viscosity varywith depth, their values must be rede�ned and recalculated for every given densityand viscosity pro�le. In what follows, we use a heuristic analysis of a Rayleigh-Taylorinstability to develop a more general scaling law to account for the variation of densityand viscosity with depth in a layer. In doing so, we de�ne new dimensionless growth27



rates, q0 and C 0, which are distinguished from q00 and C 00 by depending only on thewavelength of the perturbation.Consider a layer positioned between z = �h and z = 0 of density �1 overlyinga halfspace of density �2 < �1. A sinusoidal perturbation of the boundary betweenthem creates a deviatoric stress �eld. Continuity of normal stress across the perturbedboundary can be expressed as a di�erence in stresses across a line representing theunperturbed boundary, by taking the additional overburden pressure due to the de-formation into account [e.g., Ricard and Froidevaux, 1986]:�1;zz � �2;zz = (�1 � �2)gZ cos(kx) (2.13)where k = 2�=� is the wavenumber of the perturbation in vertical displacement andZ is its amplitude. Thus, the stresses that drive the instability are generated by theanomalous mass of material that has crossed the original boundary between the layers.These driving stresses can be separated into deviatoric stress and pressure, as shownby (2:4). The deviatoric stress, �zz , can be directly related to 
uid deformation using(2:6). The 
uid 
ow itself also creates a dynamic pressure, p, which varies laterally.The amplitudes of both �zz and p should both depend linearly on the right handside of (2:13) because both components are associated with the perturbation to thedensity �eld, but their relative values should vary with wavenumber and depth. Inthe numerical studies we perform later, we �nd that the depth dependences of �zzand p are similar throughout a deforming layer, except where the deviatoric stressis necessarily zero, such as near a rigid boundary. As a result, we can relate thedeviatoric stress directly to the total stress, and treat �zz as proportional to �zz in thefollowing analysis, remembering that this approximation overestimates the deviatoricstress near rigid boundaries. Because the fraction of the total stress that is deviatoricdepends on the wavenumber k, we proceed using only proportionalities when dealingwith stress. The uncertainty in proportionality will later be accommodated in a factorthat depends only on wavenumber.To develop a simple scaling law that takes into account the variation of material28



properties with depth, we must apply the driving stresses given by (2:13) to a con-tinuously varying density �eld. Let us simplify the problem by assuming that shearstresses, �xz, are zero. Although this is clearly not valid for the entire 
ow �eld, sym-metry allows us to make this approximation where the de
ection of the boundary isat a maximum (near x = 0 in (2:13)). We approximate the driving stress, �zz , as afunction of depth by representing the density �eld as a series of in�nitesimally thinlayers with density contrast d� between them. Then the maximum driving stress,located at x = 0, can be written in analogy to (2:13) as:d�zz(z)dz � d�(z)dz gZ (2.14)Suppose that density varies with temperature, T , according to:�(T ) = �m + �m�(Tm � T ) (2.15)where �m is the background mantle density, � is the coe�cient of thermal expansion,and Tm is the uniform temperature of 
uid below the cold upper layer [e.g., Turcotteand Schubert, 1982, p. 179]. Integrating (2:14) from �zm, a point at the bottom ofthe dense layer where T = Tm and the driving stress is zero, to a shallower depth of�z yields: �zz(z) � �mg�(Tm � T (z))Z (2.16)where we treat the perturbation amplitude, Z, as constant at all depths in the layer.Because the perturbation Z must go to zero at a rigid surface, we recognize that(2:16) overestimates the stress as z approaches zero.To relate the driving stresses to the growth of the instability, we use the fact thatthe vertical strain rate ( _�zz) integrated from �zm to the surface along the verticalcenterline of the sinusoidal perturbation (here _�xz = 0) is equal to the downwardvelocity of the perturbation at z = �zm:w(�zm) = dZdt = Z 0�zm _�zz(z)dz (2.17)29



This relation should yield the downward velocity at any depth z, not just �zm, but wemake this choice because we later relate strain rate to stress, and we wish to includethe contribution to the downward velocity from stresses throughout the entire layer.We proceed assuming a general constitutive relation because we will later considerthe case in which n > 1. Assuming incompressibility as in (2:2) and that shear strainrates are small near the perturbation's maximum, _E � _�zz . Then applying (2:5) to(2:17) yields: w = dZdt � Z 0�zm  �zz(z)B(T (z))!n dz (2.18)where we allow the rheological parameter, B, to vary with temperature. De�ning thedriving stress using (2:16), and again assuming that the perturbation amplitude, Z,does not vary with depth, we �nd:w = dZdt � Z 0�1  �mg�(Tm � T (z))ZB(T (z)) !n dz (2.19)where we use the fact that the driving stress below the layer is zero to expand the lowerintegration limit. We can simplify this integral by nondimensionalizing temperature,T 0, and the rheological parameter, B0(T 0):T 0 = T � TsT0 and B 0(T 0) = B(T )Bm (2.20)where T0 = Tm � Ts is the di�erence between the temperature at depth, Tm, and thesurface temperature, Ts, and Bm = B(Tm). Thus, T 0 varies between 1 at depth and0 at the surface. We nondimensionalize length according to:z0 = z=h (2.21)where h is a length scale associated with the thickness of the unstable layer. Usingthese nondimensionalizations, we de�ne functions Fn and fab, according to:Fn = Z 0�1  1 � T 0(z0)B0(T 0(z0))!n dz0 = Z 0�1 (fab(z0))n dz0 (2.22)30



Thus, Fn is the integral through the layer of fab to the n power. Using this de�nitionof Fn and the nondimensionalizations above, we can simplify (2:19) to:w = dZdt =  C 0n !n ��mg�T0Bm �n hFnZn (2.23)where C 0 is analogous to the super-exponential growth rate C de�ned by Housemanand Molnar [1997], derived with a di�erent approach for a range of constant prop-erties. This expression yields exponential growth of the perturbation amplitude Z ifn = 1 and super-exponential growth if n > 1.The function fab in (2:22) weights the negative buoyancy at each point in thethermal structure by the inverse of its viscosity coe�cient. For highly temperature-dependent viscosity, the coldest regions, although quite dense, do not yield largevalues of fab. Instead, the largest values of fab occur in relatively warm, less denseregions near the bottom of the thermal structure where viscosity is small. Thus, theweighting o�ered by fab accounts for the negative buoyancy of strong material beingless important than that of weak material in driving a convective instability. As aresult, fab should scale the contributions of 
uid at di�erent depths to the total drivingbuoyancy. We term Fn, the integral of negative buoyancy divided by viscosity, the\available buoyancy," because it measures the total negative buoyancy \available"for driving a convective instability. Insofar as Fn properly takes into account thevariation of density, viscosity, and temperature with depth in an unstable layer, thedimensionless growth rate in (2:23), C 0, should depend only on the wavelength of theinitial perturbation. We will test this statement, and thus test the validity of thisscaling of the growth rate using the \available buoyancy," by performing a series ofnumerical experiments on convectively unstable 
uids.2.2.3 Newtonian FluidsIf n = 1 for Newtonian viscosity, (2:23) becomes:dZdt = q0�mg�T0hF12�m Z (2.24)31



where C 0 is replaced by q0. The perturbation, Z, grows exponentially with growthrate: q = q0�mg�T0h2�m F1 (2.25)If �� = �m�T0, this de�nition of q0 is the same as that given in (2:9), except that nowour growth rate scales with the parameter F1, so q0 should vary only with wavelength.2.2.4 Non-Newtonian FluidsTo analyze non-Newtonian 
uids (n > 1), we take the time derivative of (2:23):dwdt =  C 0n !n ��mg�T0Bm �n hFnnZ(n�1)w (2.26)We eliminate the perturbation size, Z, in favor of the velocity, w, using (2:23):dwdt = C 0��mg�T0Bm � (hFn)(1=n)w(2n�1)=n (2.27)Houseman and Molnar [1997] show that integration of (2:27) yields:w = �C 0 �n � 1n � �mg�T0Bm (hFn)(1=n) (tb � t)�( n1�n) (2.28)which is similar to (2:10) and yields super-exponential growth, but includes the \avail-able buoyancy" parameter, Fn. This suggests a nondimensionalization of distance andtime of: t0 = t ��ghB !n Fn and z0 = zh (2.29)which is similar to (2:11), but now includes information about how B and � vary withdepth. Thus, C 0 should depend only on the perturbation wavelength. Then (2:28)becomes: w0 = �C 0�n� 1n � (t0b � t0)�( n1�n) (2.30)which is the same as (2:12), but uses the new nondimensionalization of time. The timet0b is, of course, a function of the size of the initial perturbation, Z 00. By integrating32



(2:30), Houseman and Molnar [1997] show that:Z 0(1�n) = (n� 1) C 0n !n (t0b � t0) (2.31)from which we can relate t0b to Z 00 by setting t0 = 0:t0b = � nC 0�n Z 0(1�n)0(n� 1) (2.32)2.2.5 The Role of Di�usion of HeatDi�usion of heat smooths, and thus diminishes, perturbations to an unstable densitystructure. To quantify thermal di�usion, we compare the rates at which temperatureanomalies are advected to those at which they are di�used, in a manner similar to thatused by Conrad and Molnar [1997]. For conductive transfer of heat in one-dimension:@T@t = � @2T@x2 ! (2.33)where � the the thermal di�usivity [e.g., Turcotte and Schubert, 1982, p. 154]. Weconsider thermal di�usion in the horizontal direction because horizontal variationsin density grow unstably. Consider perturbations to the background temperature�eld of the form T � cos(kx). Then (2:33) shows that such perturbations decayexponentially with time as: @T@t = ��4�2�2 T = �qdT (2.34)which de�nes the exponential decay rate, qd.We wish to compare the rate at which temperature perturbations are di�used tothe rate at which they are advected. For the general case of non-Newtonian rheology,we can obtain an instantaneously valid exponential growth rate by comparing (2:23)to the exponential growth equation for Z(t) in (2:8). This gives an exponential growth33



rate, qn of: qn = �Cn �n ��mg�T0Bm �n hFnZ(n�1) (2.35)This expression varies with perturbation amplitude, Z(t), so that qn increases as Zdoes, yielding the super-exponential growth predicted by (2:28). For a given valueof Z, however, it gives an exponential growth rate for advection of temperature per-turbations, which we compare to the rate of exponential decay by taking the ratioqn=qd. We simplify by ignoring all constants and assume that the fastest growingwavelength scales with the layer thickness, so � � h. In doing so, we obtain a dimen-sionless quantity that compares the rate of advection to the rate of thermal di�usion,and thus resembles a Rayleigh number:Ran = ��mg�T0nBm �n h3Zn�1� Fn (2.36)For Newtonian viscosity, n = 1, yielding:Ra1 = �mg�T0h32��m F1 (2.37)which is independent of Z. This \Rayleigh" number, Ran, is a measure of the con-vective instability of a thermal boundary layer, as �rst described by Howard [1964].2.3 Numerical ExperimentsTo carry out experiments on both Newtonian and non-Newtonian 
uids with di�er-ent \available buoyancy," we use the �nite element code ConMan, which can solvethe coupled Navier-Stokes and energy equations appropriate for thermal di�usion,incompressibility, and in�nite Prandtl number [King, Raefsky and Hager, 1990]. Thiscode has been found capable of accurately determining the exponential growth rateof an isothermal Rayleigh-Taylor instability [van Keken et al., 1997]. We initiatedconvective instability by imposing a temperature �eld in which cold material over-lies warmer material. Because we assign a thermal expansivity �, the colder 
uid is34



denser, and 
ows downward into the underlying warm 
uid as the instability grows.Two initial temperature �elds are used (Figure 2.1). Conductive cooling of ahalfspace, appropriate for the cooling of oceanic lithosphere, yields a temperaturepro�le given by an error function:T (z) = Ts + T0 erf(�z=hc) (2.38)where hc = 2p�tc and tc is the time during which the halfspace has cooled [e.g.,Turcotte and Schubert, 1982, pp. 163-167]. A linear temperature pro�le results fromconduction of heat across a �xed thickness, hl:T (z) = Ts + T0(�z=hl) for 0 > z > �hlT (z) = Tm for z < �hl (2.39)To allow instabilities to develop, we perturb the temperature �eld sinusoidally in thehorizontal dimension with a wavelength �. In particular, we allow the length scalesof the thermal pro�le to vary as:hc(x) = 2p�tcq1 + p cos(2�x=�)hl(x) = hlq1 + p cos(2�x=�) (2.40)where p is a constant that speci�es the amplitude of the perturbation. Thus, thethickness of the unstable temperature structure varies between hp1 + p and hp1� p.This corresponds to a sinusoidal variation in the cooling time, tc, which has no physicalrelevance to us, but imposes a smooth perturbation.So that the unstable layer occupies a constant proportion of the �nite elementgrid, we varied the size of the grid so that its depth is 8.27 times hc or 7.33 timeshl. The horizontal dimension of the box is determined by the wavelength at whichthe instability is perturbed, which also scales with hc or hl. We use 90 elements inthe vertical direction, with 60 elements in the upper half of the box, giving doubleresolution in the region where the most of the deformation occurs. The number ofelements in the horizontal direction is varied so that each element in the upper half35



of the box is square.Boundary conditions on the box are rigid on the top surface, free slip along thetwo sides, and zero stress along the bottom boundary. Although the Earth's surface isfree slip, we choose a rigid top because we wish to study convection beneath the coldupper lithosphere, which is strong and therefore acts as a rigid upper boundary tothe 
uid beneath it. Furthermore, the free slip boundary condition generally resultsin 
ow at wavelengths comparable to the depth of the entire 
uid, unless viscosityis highly temperature-dependent [e.g, Solomatov, 1995; Jaupart and Parsons, 1985].In our case, this leads to 
ow at in�nite wavelength because we use a no stressbottom boundary condition. For the Earth, the free-slip boundary condition resultsin plate-scale 
ow, which is not under study here. Nevertheless, we do perform a fewcalculations with a free slip upper boundary for comparison.The no stress bottom boundary condition permits 
uid to 
ow in and out of thebottom boundary so that material is not constrained to circulate within the box,which could impede 
ow. The box is su�ciently deep, however, that the base of agrowing instability, de�ned by the location of the T 0 = 0:9 isotherm, only penetratesthe top 30% of the box before the instability begins detach from the overlying layer.To see how this bottom boundary may e�ect our results, we tried imposing zerohorizontal velocity on the bottom boundary while maintaining free 
ow of materialin the vertical direction. This boundary condition produces unstable growth that isless than 10�5% slower than it is for the no stress boundary condition, indicating thatour choice of the latter does not signi�cantly speed unstable growth.Because we are studying the time-dependence transient phenomena, the accuracyof our time stepping routine is important. We use an explicit predictor-corrector algo-rithm, which should be accurate to second-order [Hughes, 1987, pp. 562-566]. Afterseveral tests, we chose a time step that is one tenth that of the dynamically chosenCourant time step. Increasing the temporal resolution further produced measuredgrowth rates that were larger by only a few percent. Because we do not hope to beable to measure growth rates to better than one, and possibly two, signi�cant �gures,this degree of error was deemed acceptable.36



We allow density, �, to vary with temperature according to (2:15). As a result,density, and thus the buoyancy that drives the instability, varies with depth (Fig-ure 2.1). The temperature dependence of the rheological strength parameter, B, isgenerally given as: B(T ) = B0 exp� EanRT � (2.41)where B0 is an initial value of B, Ea is an activation energy, R is the universal gasconstant, and T is temperature in Kelvins [e.g., Kohlstedt, Evans, and Mackwell,1995]. We can de�ne B0 such that B(Tm) = Bm, from which we approximate (2:41)as: B(T ) = Bm exp(Ea(Tm � T )nRT 2m ) (2.42)If we de�ne a variable r = exp(EaT0=nRT 2m), we can rewrite (2:42) as:B(T ) = Bm exp(ln(r)Tm � TT0 ) (2.43)Thus, the parameter r describes how strongly B varies with temperature. In addition,because �(Ts) = r�m, r represents the total variation in B across the 
uid.By increasing r, we increase the strength of the cold, dense portions of the un-stable density structure and thus decrease their ability to participate in a convectivedownwelling. The variation of the function fab, as given by (2:22), with depth (Fig-ure 2.2) provides a measure of the relative contributions of each level in the unstabledensity pro�le to the convective instability as a whole. For constant B (r = 1), thegreatest contribution to the instability occurs in the coldest, densest regions at thesurface of the layer. As this cold material is strengthened, however, by an increasein r, the greatest contribution occurs deeper in the layer, where material is su�-ciently warm to be weak enough to participate in the downwelling. For the moststrongly temperature-dependent viscosity (r = 1000), only the bottom portion ofthe dense layer can contribute. This region is thinner for the linear pro�le than theerror-function pro�le, because the latter contains more warm material.We argue above that the integral of the nth power of the contribution function,37
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2.4 Results for Newtonian ViscosityWe �rst examine the role of temperature-dependent Newtonian viscosity on the expo-nential growth of convective instability for an error-function temperature pro�le (Fig-ure 2.4). Increasing the temperature dependence of viscosity decreases the amount ofmaterial that participates in the instability. For example, only the bottom isotherm(T 0 = 0:9) shows signi�cant de
ection at large amplitudes for r = 1000 (Figure 2.4d),while nearly the entire unstable layer participates in the downwelling for r = 1 (Fig-ure 2.4a). For each value of r, the shallowest signi�cantly de
ected isotherm lies nearthe maximum in the corresponding pro�le of fab in Figure 2.2a. Thus, the curvesin Figure 2.2 appear, at least qualitatively, to represent the regions of the denselayer participating in the convective instability. The exception is for r = 1. Therigid boundary condition permits no de
ection at the surface, but fab(r = 1) has amaximum there (Figure 2.2).When made dimensionless without scaling by \available buoyancy," the time foran instability to reach a given amplitude increases as the temperature dependence ofviscosity increases (Figure 2.4). We can quantify this e�ect by calculating a dimen-sionless growth rate, as for a Rayleigh-Taylor instability, for each viscosity pro�le. Todo this, we measure the downward speed, w, of the T 0 = 0:9 isotherm as a functionof time. Because this isotherm is near the bottom of the unstable layer, its speedgives us a measure of the growth of the entire instability. We nondimensionalize (2:8)using (2:11), which gives: lnw00 = lnw000 + q00t00 (2.44)where w000 is the initial dimensionless velocity. If growth is exponential, a plot of lnw00versus t00 should then yield a linear relationship with slope equal to q00. The initiallylinear slopes shown in Figure 2.5a for the four cases shown in Figure 2.4 indicatethat the instability begins its growth exponentially. Following the initial exponentialgrowth stage, the instabilities accelerate slightly as non-linear e�ects become moreimportant at large amplitudes. This behavior is also observed by Houseman andMolnar [1997] who attribute the acceleration in part to the selection of the fastest40
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growing wavelength at large amplitudes. Because we allow instabilities to grow tovery large amplitudes, this non-linear phase is followed by a period in which growth ofthe instability begins to taper o� and the downwelling plume approaches a constantvelocity. When the instability detaches from the unstable layer, it should reach a\terminal" velocity, a condition described approximately by Stokes 
ow, the descentof a heavy sphere in a viscous 
uid [e.g., Turcotte and Schubert, 1982, pp. 263-268].Growth rates, q00, show a strong dependence on the temperature dependence ofviscosity, with larger r yielding slower growth. When is time is nondimensionalizedusing (2:29) to include the \available buoyancy" (Figure 2.5b), however, the fourcurves nearly collapse onto a single curve, with approximately equal dimensionlessexponential growth rates, q0. This indicates that the \available buoyancy" scales thea�ect of the temperature dependence of viscosity. We attribute the relatively lowdimensionless growth rate for r = 1 to the in
uence of the rigid top boundary of the
uid. As discussed above, this condition does not permit this instability to utilize thesigni�cant \available buoyancy" near the surface of the layer for r = 1 (Figure 2.2),so the scaling with F1 overestimates the amount of dense material that participates inthe instability. For r > 1, there is little contribution to the \available buoyancy" fromthe surface because the material is strong there, and F1 more accurately representsthe amount of material available for driving a convective instability.Growth rates nondimensionalized without \available buoyancy" depend on boththe temperature dependence of viscosity and on the wavelength of the initial per-turbation (Figure 2.6a). When scaled by \available buoyancy," however, the threecurves for r > 1 approximately collapse onto a single curve that depends only onwavenumber (Figure 2.6b). There remains a di�erence at short wavelengths (k0 > 2),some of which is due to the presense of the rigid lid, as discussed above. Similar cal-culations using a free slip upper boundary condition (Figure 2.7) show that for shortwavelengths, the \available buoyancy" scaling works slightly better with a free top(compare Figures 2.6b and 2.7). Growth rates at long wavelengths (small k0) are notproperly scaled if top boundary slips freely because in this case the preferred wave-length scales with the depth of the box and not the depth of the unstable layer. For42
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the nearly isoviscous cases of r = 1 and r = 10, this allows the longest wavelengthsto grow most rapidly (Figure 2.7), but if viscosity is highly temperature-dependent,growth rates decrease with wavelength, as they do for a rigid lid (compare r = 1000curves in Figures 2.6b and 2.7). Thus, the \available buoyancy" does a better jobof scaling the temperature dependence of viscosity if the upper boundary is free slip,but only for short and intermediate wavelength perturbations.For the rigid top, we also attribute some of the unscaled di�erences in q0 at largewavelength (Figure 2.6b) to the decrease of the wavelength of maximum growth ratewith increasing r. As the viscosity becomes more temperature-dependent, the thick-ness of the unstable layer that participates in the instability decreases. This thick-ness should scale with the dominant wavelength [Conrad and Molnar, 1997; Molnar,Houseman and Conrad, 1998], so that the maximum value of q00 or q0 should occurat shorter wavelengths for larger r, as can be seen in Figure 2.6b. As a result, q0 atshort wavelengths is smaller for smaller values of r.Similar calculations using a rigid top and an initially linear temperature pro�le(Figure 2.8) yield wavelengths of maximum growth rate that depend on r more thanthey do for an error-function temperature pro�le (Figure 2.6). We attribute this to thepresence of more warmmaterial, and thus more \available buoyancy," near the bottomof the error-function pro�le than the linear pro�le (Figure 2.2). Because this materialalways participates in an instability, the e�ective thickness of the unstable part of thelayer is less variable for the error-function pro�le than it is for the linear pro�le. Thus,the e�ective thicknesses of the \available buoyancy" curves, fab, in Figure 2.2 dependmore on r for the linear pro�le. Because the wavelength of maximum growth rateshould scale approximately with this thickness, its values show a greater variation forthe linear temperature pro�le.The \available buoyancy" scaling of the growth rate appears to account for thetemperature dependence of viscosity in the results for the linear temperature pro�le(Figure 2.8). Because the wavelength of maximum growth rate varies with r, thecurves for di�erent r do not fall together when scaled with the \available buoyancy"(Figure 2.8b). The value of the maximum growth rate, however, is the same for all44
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and exponentially varying viscosity. Such calculations yield growth rates that agreeto within 10% of those measured here (Figure 2.8). The greatest deviation occursat short wavelengths, but tests show that increasing the spatial resolution of the�nite element grid reduces this disagreement. The agreement between Rayleigh-Taylor theory and our calculations, which include thermal di�usion, indicates thatthe convective instability approximates a Rayleigh-Taylor instability, at least for thehigh values of Ra1 used here. The agreement also indicates that ConMan accuratelysimulates the convective instability.We investigated the conditions for the stability of a cold, dense layer by measuringq0 for di�erent values of the stability parameter, Ran (Figure 2.9). We calculatedgrowth rates for a linear temperature pro�le and k0 = 3:1, chosen because it is nearthe maximum of the q0 versus k0 curves for r = 10, 100, and 1000 (Figure 2.8b). Thethree values of q0(Ra1) for these values of r di�er from one another by less than 10%,when dimensionless growth rates are calculated using the \available buoyancy." Forlarge values of Ra1, q0 is approximately equal to 0.18, as we observed in Figure 2.8b.When Ra1 is less than about 500, growth is slowed, and for Ra1 less than about50, growth is stopped altogether. This decrease in q0 is due to the suppression oftemperature perturbations by thermal di�usion as Ra1 decreases.The ability of thermal di�usion to suppress unstable growth should vary withwavelength because small wavelength perturbations are most susceptible to smoothingby thermal di�usion in the horizontal direction. This is evident in Figure 2.10, where,for large k0, growth is stopped or signi�cantly slowed for the smallest values of Ra1. Atlonger wavelengths, however, growth rates for this same value of Ra1 become greaterthan those of the larger Ra1 calculations. Long wavelength perturbations are lessprone to smoothing by horizontal thermal di�usion, and for su�ciently small Ra1,they appear to grow more rapidly than those with larger Ra1. We attribute relativelyhigh dimensionless growth rates at long wavelengths also to thermal di�usion, butin the vertical direction. If the layer cools su�ciently during advective growth, itsthickness and the amount of unstable material will increase so that the instabilityproceeds with more \available buoyancy" than the initial conditions suggest. This48
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temperature �eld tend to be maximized near the stagnating regions of a �nite-elementgrid. If numerical error is a problem, however, it is not diminished by increasing thespatial resolution of the �nite element grid or by allowing the surface node nearestthe corner to move freely in the horizontal direction to prevent \grid locking." Fur-thermore, other numerical codes produce similar results [U. Christensen, personalcommunication, 1998]. Another explanation could be related to the stress dependentviscosity, which would tend to increase the e�ective viscosity of the stagnant cornerregion due to the low strain rates there. The e�ective viscosity of the material justto the side of the stagnant corner, however, should decrease due to the presence ofsigni�cant strain rates that advect temperature contours around the corner from theside. For increasingly temperature-dependent viscosity, the stagnant corner becomesless pronounced, because it is not associated with the rigid lid, and deeper, becausethe zone of active deformation is shifted downwards (Figure 2.11). In any case, the nete�ect of this phenomenon, which represents less than a 10% di�erence in temperatureacross a small portion of the entire downwelling region, should be small.The runs with non-Newtonian viscosity show a greater acceleration of the insta-bility with increasing time than do the Newtonian results. For Newtonian viscosity,about 15% of the total time is spent between the two temperature pro�les shown inFigure 2.4, compared to between 1.5 and 3% for runs with non-Newtonian viscosity(Figure 2.11). Clearly growth for non-Newtonian viscosity accelerates faster than theexponential growth we observe for Newtonian viscosity, as Houseman and Molnar[1997] demonstrate for the Rayleigh-Taylor instability. To test Houseman and Mol-nar's [1997] scaling law, we again determine the velocity of the T 0 = 0:9 isothermas a function of time for the four calculations contoured in Figure 2.11. Accordingto (2:12), a plot of w00(�2=3) as a function of dimensionless time, t00, should be linear,with slope equal to �2C 00=3 and a time intercept of t00b . Because t00b varies by ordersof magnitude with changes in r (Figure 2.11), we rescale both axes by dividing by t00b(Figure 2.12a). Thus, all curves have the same time intercept at t00=t00b = 1, and theirrelative slopes can be compared easily.The relationships between w00(�2=3) and t00 are clearly linear for all r (Figure 2.12a),52
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r = 1, again yields values of C 0 that are smaller than those for r > 1. For non-Newtonian viscosity and a rigid top, the scaling of the temperature dependence ofviscosity using the \available buoyancy" is less impressive than it was for Newtonianviscosity, but it still provides a useful method of approximating super-exponentialgrowth rates, and appears to be somewhat independent of the functional form of theinitial temperature pro�le.Linear theory can not provide predictions of super-exponential growth rates, butwe can compare our calculations for the linear temperature pro�le to those of previousnumerical studies of the Rayleigh-Taylor instability. For r = 1, Houseman and Molnar[1997] give a maximumvalue of C 00 = 0:37 for n = 3 and a linear density pro�le over aninviscid halfspace, where we have divided by two to make their nondimensionalizationagree with ours, and by 2(1=3) to account for the di�erence in their de�nition of_E. This is nearly a factor of two larger than the maximum value we measure ofC = 0:21 (Figure 2.15a). Some (maybe half) of this discrepancy is expected becausewe do not use an inviscid lower halfspace. We have adjusted estimates of C 00 byMolnar, Houseman, and Conrad [1998] for the Rayleigh-Taylor instability of a layerwith B decreasing exponentially and density decreasing linearly over a halfspace ofconstant B by dividing by a factor of (ln r)(n+1)=n to make them agree with ournondimensionalization. These adjustments yield C 00 = 0:096 for r = 10 and C 00 =0:040 for r = 100. Our measurements of C 00 = 0:064 and C 00 = 0:026 (Figure 2.15a)are about 70% those ofMolnar, Houseman, and Conrad [1998]. This discrepancy maybe numerical, but could also be due to the di�erent density structures at the bottomof the layers; for Molnar, Houseman, and Conrad [1998], there is no di�usion of heat,but with such di�usion, density, and hence mass, is redistributed before signi�cantgrowth occurs. Moreover, such a redistribution occurs where viscosity is lowest, andthus at a level that a�ects the \available buoyancy" most. Thus, perhaps we shouldnot expect our estimates of C 00 to agree with those for a Rayleigh-Taylor instability.The variation of C 0 with the stability parameter Ra3 (Figure 2.16) is similar tothe variation of q0 with Ra1 that we observe for Newtonian viscosity (Figure 2.9). Fornon-Newtonian viscosity, three temperature dependences of viscosity are given for55
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of viscosity. The parameter B varies with temperature as:B(T ) = 3�(n+1)2n �A2 ��1n exp� HnRT � (2.45)where R = 8:3 J K�1mol�1 is the universal gas constant, H is the activation enthalpy,and A is the experimental constant inferred from laboratory measurements that relatestrain rates to a power of stress [Molnar, Houseman, and Conrad, 1998]. This relationcan be made dimensionless using (2:20):B0(T 0) = exp HT0(1 � T 0)nRTm(Ts + T0T 0)! (2.46)For both linear and error-function geotherms, we use (2:22), (2:45), and (2:46) to cal-culateBm and Fn for values ofH, A, and n given byKarato, Paterson, and FitzGerald[1986] and relevant to di�usion (n = 1) and dislocation (n > 1) creep mechanismsfor \wet" and \dry" conditions (Table 2.1). The dislocation creep mechanism is ap-plicable if stresses are greater than about 0.1 to 1 MPa, which is likely the case forconvective instability. Hirth and Kohlstedt [1996] propose that the \wet" rheologyis applicable below 60 to 70 km depth. For dislocation creep, the estimates of Hin Table 2.1 di�er from those of Hirth and Kohlstedt [1996] by less than 20%, butestimates of A for dry olivine are smaller by a factor of 5, and those for wet olivinecan not be easily compared because Hirth and Kohlstedt [1996] give a stress exponentof 3.5. For di�usion creep, estimates of A depend signi�cantly on grain size, which isnot well known for the mantle. Because of uncertainties in A and n, we expect ourcalculations of Bm to also include signi�cant uncertainty, making our ignorance ofthe presence of wet or dry conditions at the base of the lithosphere somewhat unim-portant for this study. Our estimates of Fn, however, do not depend on A, and thusshould be more reliable. The most uncertain parameters are then the thickness, h,of the mantle lithosphere, and the material strength at its base, Bm; we leave theseparameters to be determined in the following analysis.To estimate stability and growth rates for di�usion creep, we �rst calculate Ra160



Table 2.1. Estimates of Bm and Fn for various creep regimes and temperature pro�les.Creep Regime ny Hy Ay Bm Fn Fn(kJ/mol) (s�1Pa�n) (Pa s1=n) (Error Function) (Linear)Wet Di�usion 1 250 1:5� 10�12z 6:7� 1019 3:1� 10�2 8:5 � 10�3Dry Di�usion 1 290 7:7� 10�10z 2:6� 1018 2:6� 10�2 6:6 � 10�3Wet Dislocation 3 420 1:9� 10�15 1:9 � 109 1:3� 10�4 5:5 � 10�5Dry Dislocation 3.5 540 2:4� 10�16 1:9 � 109 2:3� 10�5 8:8 � 10�6yFrom Karato, Paterson, and FitzGerald [1986].zAssumes a 10 mm grain size.using (2:37) as a function of �m using the parameters values listed above and forvalues of h equal to 25, 50, 100, and 200 km. We do this for F1 = 3:1 � 10�2 andF1 = 6:6�10�3 to span the full range of \available buoyancy" given for di�usion creepin Table 2.1. Using the values of q0(Ra1) given in Figure 2.9 for r = 100, we use (2:25)to calculate the exponential growth rate, q, as a function of �m. Exponential growthexhibits a doubling of the amplitude of an instability in a time given by ln(2)=q, whichwe plot as a function of �m in Figure 2.18. Because the growth rate scales inverselywith viscosity, the doubling time scales with �m, if �m is small enough to yield a largevalue of Ra1 (Figure 2.18). If �m is su�ciently large that Ra1 �< 50 (Figure 2.9),however, exponential growth stops, and the doubling time becomes in�nite. Thiscritical viscosity varies with the lithosphere thickness, h (equation (2:37)). As aresult, a thin unstable layer requires lower viscosity at its base to become convectivelyunstable than does a thicker layer (Figure 2.18).Depending on the initial amplitude of a perturbation, several doubling times willbe required for that perturbation to grow large enough to remove the bottom portionof the lithosphere. Thus, if convective instability requires �ve doubling times within,say, 10 million years, the (Newtonian) viscosity at the base of the lithosphere must be61
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the upper bound of F1 (Figure 2.18, solid lines). Thus, if viscosity is Newtonian,convective removal of the lithosphere's base in a few million years is perhaps notunrealistic, but probably only where mantle lithosphere is more than 100 km thick.To consider non-Newtonian viscosity applicable for dislocation creep, we calcu-lated Ran as a function of Bm for dislocation creep under both wet (n = 3) and dry(n = 3:5) conditions. We again use the lithospheric parameters given above and newestimates of Fn (Table 2.1), and we consider perturbations with amplitudes only 10%of the thickness of the entire layer, Z0 = 0:1h. We use the r = 100, Z 00 = 9:54% curvein Figure 2.16 to obtain C 0 as a function of Bm, from which we calculate the dimen-sionless time to removal, t0b using (2:32). We make this quantity dimensional using(2:29), and give its functional dependence on Bm in Figure 2.19 for both wet and dryolivine, four thicknesses, and the range of Fn given in Table 2.1. In applying the curvefor C 0(Ra3), which we calculated using n = 3, to dry conditions for which n = 3:5,we have assumed that the curve of C 0(Ran) is approximately the same for both n = 3and n = 3:5. This assumption is perhaps not inappropriate because Houseman andMolnar [1997] �nd only a weak dependence of C 00 on n for n = 2, 3, and 5.Extrapolations of laboratory measurements to conditions at the base of the litho-sphere yield Bm on the order of 109 Pa s1=n for both n = 3 and n = 3:5 (Table 2.1).This value of Bm implies convective removal of the lower lithosphere in less than 1million years for lithospheric thicknesses greater than about 25 km for wet conditions(Figure 2.19a), but 100 km for dry conditions (Figure 2.19b). These thicknesses, ofcourse, depend on the actual value of Bm. Similarly, the \available buoyancy," Fn,(Table 2.1) a�ects the \critical" thickness for convective instability. Decreasing Fnby a factor of two corresponds to increasing Bm by a factor of only 21=n, as shownby (2:29), making variations in Fn less important for n = 3 or 3.5 than for n = 1.For n > 1, the time to removal also depends on the initial perturbation amplitude,Z0, to the (1� n) power, as in (2:32). As supposed by Houseman and Molnar [1997]and Molnar, Houseman, and Conrad [1998], perturbations with amplitudes half thelithospheric thickness may be possible for recently thickened lithosphere, which are�ve times the amplitude of those considered here. Multiplying Z0 by a factor of 563
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has the same e�ect as decreasing Bm by a factor of 51�1=n, as shown by (2:32) if it isredimensionalized by (2:29). This shifts the curves in Figure 2.19 to the right by afactor of about 3, which expands the range of Bm that produces rapid instability fora given lithosphere thickness.Some portions of the continental lithosphere have remained stable for long periodsof the Earth's history. Many cratonic shields have undergone little or no deformationfor more than a billion years [e.g., Ho�man, 1990]. Thus, continental lithosphereis generally stable; some additional mechanism is required for it to become unsta-ble. One such mechanism could be mechanical thickening. If the mantle lithosphereis thickened along with the crust during an episode of horizontal shortening, thevertical length scales associated with a convective instability increase. Because thesublithospheric viscosity is not a�ected by such thickening, an increase in h has thee�ect of decreasing the time for an instability to occur (Figures 2.18 and 2.19). Forcertain values of h and �m or Bm, increasing h by a factor of two can cause an oth-erwise stable lithosphere to become convectively unstable on short time scales. Forexample, if Bm = 1010 Pa s1=3 for dislocation creep of wet olivine, 50 km thick mantlelithosphere is convectively stable, but its lower part will be removed in 2 million yearsif it thickens by a factor of two (Figure 2.19a).If viscosity is non-Newtonian, increasing the amplitude of a perturbation has thesame a�ect as increasing the layer thickness, h, as discussed above. Thus, convectiveinstability can be generated from a stable mantle lithosphere if large perturbations canbe generated at its base. Horizontal shortening could help generate large amplitudeperturbations through folding instability or localized thickening. Because horizontalshortening has already been associated with the initiation of convective instabilitythrough an increase in lithosphere thickness, as described above, or through a decreasein strength due to strain-rate weakening [Molnar, Houseman, and Conrad, 1998], itseems likely that horizontal shortening could initiate a convective instability at thebottom of the lithosphere.Convective instability should continue to erode thickened mantle lithosphere untilit is thin enough to be stable on long time scales. The bottom, weakest part will be65
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unstable and grow, but more slowly. This process should continue, with removal ofbasal layers at successively lower rates until a stable layer is achieved. If perturbationamplitudes remained only 10% of the layer thickness, the layer would eventuallyreturn to its original thickness, 65 km, but this will take a billion years (Figure 2.20).A thickness of 80 km, however, will be reached in only 10 million years. It is possibleto make similar estimates for a variety of values of Bm by estimating the thickness ofa layer that is stable on time scales of 10 million years from Figures 2.18 and 2.19 fora given value of Bm. This thickness is generally a factor of 1.2 to 1.5 times that of alayer that remains stable for a billion years (Figures 2.18 and 2.19). Thus, lithospherethat is at its stability limit and then thickened by a factor of two, should, in 10 millionyears, erode back to a thickness 20 to 50% larger than its original thickness. The lowerend of this range applies to thinner layers (25 to 50 km) and the higher end to thickerlayers (100 to 200 km).This estimate is complicated by the dependence of both Ran and tb the pertur-bation amplitude, which we expect to increase as a layer thickens. If, for instance,as h increased from 65 km to 130 km, perturbations grew from 10% to 50% of h, thethickness of the layer after 10 million years of convective removal will be about 40km (Figure 2.20), only 60% of the original 65 km thickness. Thus, it is possible thatmechanical thickening could lead to a net thinning of the mantle lithosphere becauseconvective instability can remove more lithosphere than is accumulated by a thick-ening event. For this to occur, viscosity must be non-Newtonian and the mechanicalthickening must generate a signi�cant increase in perturbation amplitude.We might also expect the temperature pro�le of a thickened layer to change as itsbottom part is convectively removed. The base of the lithosphere should be removedsoon after, or during, a thickening event, and should carry with it a signi�cant frac-tion of the layer's \available buoyancy," leaving that layer overly cold, and thereforestrong. Thus, we expect a decrease in Fn with each successive removal, slowing furtherunstable growth. This decrease in Fn is opposed by the di�usion of heat. Thermaldi�usion associated with the juxtaposition of cold lithosphere and hot asthenosphereafter a convective removal event should help replenish the \available buoyancy" by67



increasing the amount of warm material. If thermal di�usion and the increase in per-turbation size caused by thickening approximately balance the decrease in \availablebuoyancy" as successive instabilities occur, then the above estimates of the degreeof convective thinning following mechanical thickening should apply. If a decrease in\available buoyancy" overwhelms the perturbation size increase, it will be di�cult forthe instability to grow su�ciently to remove a signi�cant fraction of the lithosphere.On the other hand, if the increase in perturbation size is more important than the de-crease in \available buoyancy," thickened lithosphere could erode mantle lithosphereand eventually make it thinner than its original thickness.2.7 ConclusionsThe \available buoyancy" provides a simple scaling that approximates the rate atwhich a density instability may grow from a cold, dense 
uid layer. Although thegrowth rates for several thermal structures have already been determined [e.g., Conradand Molnar, 1997; Houseman and Molnar, 1997; Molnar, Houseman, and Conrad,1998], they are necessarily complicated by the details of the temperature dependenceof viscosity, non-Newtonian viscosity, and the functional dependence of temperatureon depth within the layer. The advantage of the \available buoyancy" scaling isthat it enables all of these \complications" to be included in a single scaling, sothat an approximate determination of the growth rate can easily be calculated fora given temperature and viscosity structure. By comparing this growth rate to theslowing e�ects of thermal di�usion, we can assess whether a given thermal structureis convectively unstable.Thus far, we have examined only unstable density structures that are generatedby the thermal contraction of 
uids at cold temperatures. For the deep mantle litho-sphere beneath continents, an unstable density structure created by temperature maybe stabilized by the addition of basalt-depleted, low-density peridotites [Jordan, 1978;Jordan, 1981; Jordan, 1988]. This structure, proposed to account for the observedstability of deep continental roots over billions of years, has been termed by Jordan68



[1978] the \continental tectosphere." Although our de�nition of the \available buoy-ancy" does not take chemical density di�erences into account, this should be relativelyeasy to do. Qualitatively, the addition of low-density material to a thermal structureshould decrease the total \available buoyancy," and thus slow growth. Care must beused, however, when determining the convective stability of density structures that arepartially generated by chemical di�erences because only temperature-induced densityvariations are subject to smoothing by thermal di�usion. In the tectosphere, however,the compositional variations in density are not themselves unstable, so the stabilityanalysis derived here should apply, if the appropriate \available buoyancy" can beestimated.Because continental lithosphere is thought be stable, at least on time scales of bil-lions of years, some disrupting event must occur for it to begin to become unstable.We have shown that the lithosphere can move from a condition of convective stabil-ity to one of instability through the mechanical thickening of its mantle component.Because the degree of instability is proportional to the cube of the mantle litho-sphere's thickness, signi�cant thickening can lead to instability, both by increasingthe amount of negatively buoyant material in a given vertical column, and by decreas-ing the e�ects of thermal di�usion. In addition, if lithospheric material behaves asa non-Newtonian 
uid, large-amplitude perturbations generated in conjunction witha thickening process, and weakening due to horizontal straining, can generate evenmore rapid convective removal after a thickening event. We estimate that 10 millionyears after mechanical thickening, it is possible that convective erosion could result ina mantle lithosphere that is only 60% as thick as it was before the thickening event.A smaller fraction of lithosphere is removed if the amplitude of perturbations doesnot increase signi�cantly as the layer thickens.Such convective removal should result in surface uplift of a few kilometers [e.g.,Bird, 1979; England and Houseman, 1989; Molnar, England, and Martinod, 1993],followed by eventual extension, as is observed in several mountain ranges [Housemanand Molnar, 1997]. The replacement of cold mantle lithosphere by hot asthenosphereshould also cause melting of portions of the remaining mantle lithosphere, causing69



volcanism and possibly regional metamorphism. Trace element isotopic analysis ofvolcanism in previously thickened areas suggests that this volcanism is produced bythe melting of continental lithosphere, not asthenosphere [e.g., Fitton, James, andLeeman, 1991; Turner et al., 1996]. This evidence is not consistent with some modelsthat produce rapid surface uplift such as complete delamination of mantle lithosphereor mechanical thickening that does not yield instability. It is, however, consistent withsigni�cant, but not complete, removal of the mantle lithosphere by convective erosion,a processes that we have shown to be associated with previous mechanical thickeningof the mantle lithosphere.Acknowledgments. This work was supported in part by National Science Foundationgrants EAR-9406026 and EAR-9725648, and by a National Science Foundation GraduateResearch Fellowship. We thank U. Christensen, B. Hager, G. Houseman, R. Fletcher, andan anonymous reviewer for suggestions at various stages of this work that focused ourthinking and clari�ed our arguments.
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