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Abstract. Cold mantle lithosphere is gravitationally unstable with respect to the
hotter buoyant asthenosphere beneath it, leading to the possibility that the lower
part of the mantle lithosphere could sink into the mantle in convective downwelling.
Such instabilities are driven by the negative thermal buoyancy of the cold lithosphere
and retarded largely by viscous stress in the lithosphere. Because of the temperature
dependence of viscosity, the coldest, and therefore densest, parts of the lithosphere are
unavailable for driving the instability because of their strength. By comparing theory
and the results of a finite element representation of a cooling lithosphere, we show
that for a Newtonian fluid, the rate of exponential growth of an instability should be

approximately proportional to the integral over the depth of the lithosphere of the
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ratio of thermal buoyancy to viscosity, both of which are functions of temperature,
and thus depth. We term this quantity “available buoyancy” because it quantifies
the buoyancy of material sufficiently weak to flow, and therefore available for driving
convective downwelling. For non-Newtonian viscosity with power law exponent n
and temperature-dependent pre-exponential factor B, the instabilities grow super-
exponentially, as described by Houseman and Molnar [1997], and the appropriate
th

time scale is given by the integral of the n"" power of the ratio of the thermal
buoyancy to B. The scaling by the “available buoyancy” thus offers a method of
determining the time scale for the growth of perturbations to an arbitrary temperature
profile, and a given dependence of viscosity on both temperature and strain rate. This
time scale can be compared to the one relevant for the smoothing of temperature
perturbations by the diffusion of heat, allowing us to define a parameter, similar
to a Rayleigh number, that describes a given temperature profile’s tendency toward
convective instability. Like the Rayleigh number, this parameter depends on the cube
of the thickness of a potentially unstable layer; therefore, mechanical thickening of a
layer should substantially increase its degree of convective instability, and could cause
stable lithosphere to become convectively unstable on short time scales. We estimate
that convective erosion will, in 10 million years, reduce a layer thickened by a factor
of two to a thickness only 20 to 50% greater than its pre-thickened value. Thickening
followed by convective instability may lead to a net thinning of a layer if thickening also
enhances the amplitude of perturbations to the layer’s lateral temperature structure.
For the mantle lithosphere, the resulting influx of hot asthenosphere could result in

rapid surface uplift and volcanism.

2.1 Introduction

The Earth’s lithosphere is both denser and stronger than the underlying astheno-
sphere, and thus provides the negative buoyancy needed to drive convection in the
mantle while at the same time significantly resisting these convective motions [e.g,

Solomatov, 1995]. As a result, the lithosphere influences the patterns and scales of
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convection that occur in the mantle. For example, Jaupart and Parsons [1985] find
that the length scale of convection depends critically on the viscosity contrast between
the boundary layer and the underlying fluid. For intermediate viscosity contrasts, the
strength of the upper boundary layer causes convection to occur at wavelengths larger
than those expected for an isoviscous fluid, which could explain the explain the ex-
istence of long-wavelength plates on the Earth [e.g, Davies, 1988]. If the viscosity
contrast is large, deformation of the boundary layer becomes sufficiently difficult that
it can not participate in convection. In this case, short-wavelength instabilities, of
the type described by Howard [1964] and observed in the laboratory by Davaille and
Jaupart [1993], develop beneath a “rigid lid.” These convective downwellings could
manifest themselves in the Earth as the downwelling of the lower, weaker, part of the
mantle lithosphere into the underlying asthenosphere.

Convective removal of cold mantle lithosphere and its replacement by hot astheno-
sphere could manifest itself at the surface as rapid surface uplift followed by eventual
extension [e.g., Bird, 1979; England and Houseman, 1989; Houseman and Molnar,
1997; Molnar, England, and Martinod, 1993; Neil and Houseman, 1999]. This se-
quence of events has been inferred for several mountain belts [Houseman and Molnar,
1997]. For example, the Tibetan plateau is thought to have undergone rapid uplift
about 8 million years ago in response to convective removal of mantle lithosphere,
triggered by mechanical thickening [e.g., Harrison et al., 1992; Molnar, England, and
Martinod, 1993].

Thickening of the mantle lithosphere by horizontal shortening can enhance the
gravitational instability in several ways. First, thickening forces cold lithosphere
downward into the hot asthenosphere, increasing the mass excess of the thickened re-
gion. [e.g., Fleitout and Froidevauz, 1982; Houseman, McKenzie and Molnar, 1981].
Second, horizontal shortening could generate large amplitude perturbations to the
background temperature structure of the lithosphere through nonuniform thickening
or folding of the lithosphere [e.g., Bassi and Bonnin, 1988; Fletcher and Hallet, 1983;
Ricard and Froidevauz, 1986; Zuber, Parmentier, and Fletcher, 1986]. Finally, if

the lithosphere weakens with increasing strain rate, as is expected for mantle rocks
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with non-Newtonian viscosity, horizontal shortening can decrease the strength of the
lithosphere and thus enhance its potential for convective instability [Molnar, House-
man, and Conrad, 1998]. Thus, horizontal shortening could play an important role
in generating convective instabilities in the lithosphere.

The degree to which the mantle lithosphere can become convectively unstable
depends primarily on its density and viscosity structure. Because of the temperature
dependence of mantle viscosity, the coldest, and therefore densest, part of the mantle
lithosphere is also the most viscous (Figure 2.1). As a result, the gravitationally
most unstable material in the lithosphere may be unavailable for driving a convective
instability because of its strength. The bottom part of the mantle lithosphere is
warmer, and therefore weaker, than the material that overlies it, but its warmth also
makes it less dense, and therefore less prone to instability. Thus, low temperature
makes lithospheric rock both dense and strong, with the former driving and the
latter retarding an instability. As a result, the generation of a convective instability is
determined by the lithosphere’s temperature structure and the details of how viscosity
and density depend on temperature. Because neither the temperature profile of the
lithosphere nor its affect on viscosity are well known, it is difficult to predict whether
convective instabilities can, in fact, grow in the lithosphere.

If diffusion of heat is ignored, the convective instability can be approximated as
a Rayleigh-Taylor instability in which a dense layer overlies a less dense layer in a
gravitational field [e.g, Chandrasekhar, 1961]. Gravity acting on perturbations to
this unstable stratified density structure will cause these perturbations to grow, but
against resisting forces due to the viscous strength of the layers. As the perturbation
grows, the buoyancy forces increase, causing the instability to grow at a faster rate.
For Newtonian viscosity, the amplitude of the instability initially grows exponentially
with time [e.g, Chandrasekhar, 1961]. For non-Newtonian, strain-rate-dependent,
viscosity, the instability grows super-exponentially because the effective viscosity of
the fluid decreases as amplitudes, and thus strain rates, increase [Canright and Mor-
ris, 1993; Houseman and Molnar, 1997]. A few studies [e.g. Conrad and Molnar,

1997; Molnar, Houseman and Conrad, 1998] have shown that exponential or super-
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Figure 2.1: A cartoon showing the approximate variation of density (left) and viscosity
(right) with depth in a boundary layer, analogous to the lithosphere. Both are the
result of the variation of temperature with depth, and are given for an error-function
temperature profile (top) and a linear temperature profile (bottom), which are the
two initial temperature profiles studied in the numerical calculations performed here.
Viscosity, which varies with temperature according to (2.43), where n = B/2, is shown
relative to that of the deep fluid (asthenosphere). Plots for different n(z) are shown
by r, which is the ratio of surface viscosity to mantle viscosity. Thus, r = 1 represents
the isoviscous case.
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exponential growth rates depend critically on how viscosity varies across a layer.
By combining the analysis of these previous studies with a heuristic analysis of the
growth of an instability, we develop a general scaling law that enables us to estimate
the growth rate of an instability from its initial temperature and viscosity structures.

The Rayleigh-Taylor analysis ignores the effects of the diffusion of heat. In a full
convective instability, density perturbations are created by horizontal temperature
gradients. If viscous forces are sufficiently strong, the rate at which perturbations
to the temperature structure grow could be slowed to the point at which they are
eliminated by thermal diffusion. If this occurs, growth of the instability stops, and
the thermal structure is convectively stable. Lateral diffusion of heat diminishes
short wavelength instabilities faster than longer ones, so its effects should decrease
with increasing wavelength. By comparing growth rates obtained by analogy to the
Rayleigh-Taylor instability to the rates at which temperature perturbations decay, we
show that we can determine whether a given temperature profile will be convectively
unstable for a given wavelength and temperature dependence of viscosity. We verify
this using numerical solutions to the basic equations for convection, for both New-
tonian and non-Newtonian rheology, and allowing for finite amplitude instabilities.
Although we do not directly include horizontal shortening in our calculations, we
will show that mechanical thickening of the lithosphere can cause it to become more
convectively unstable, by increasing the amount of negatively buoyant material that
can contribute to an instability and by diminishing the retarding effects of thermal
diffusion. Thus, we present another mechanism by which convective instability is
enhanced by horizontal shortening, supporting the prediction that convective insta-

bilities are most likely to occur where the mantle lithosphere has been significantly

thickened.

2.2 Theory

We begin our analysis of the convective instability of the lithosphere by exploiting a
simple analysis of the Rayleigh-Taylor instability, building upon the linear analysis
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presented by Chandrasekhar [1961], and considered further by Conrad and Molnar
[1997] and Houseman and Molnar [1997]. This analysis recognizes that lithospheric
temperatures increase much more rapidly with depth than the adiabatic profile and
thus generate a density structure that can become unstable if perturbations to it are
allowed to grow.

The deformation of a fluid is described by a strain rate, ¢;;, which is defined in

terms of the components of velocity, u;:

Jpp—— 2.1
i 2(8:1;j+8:1;¢) (21)
The flow field is incompressible:
8ui
i = = 2.2
Gi= g =0 (2.2)

In a viscous fluid, flow occurs to balance viscous stresses and gravitational body

forces:

L — pgdi =0 (2.3)

where ¢ is the gravitational acceleration, p is density, d;; is the Kronecker delta, and
we ignore inertial terms. The stress component, o;;, can be separated into pressure,
p, and deviatoric stress, 7;;:

0ij = —pbij + 7ij (2.4)

We assume a nonlinear relationship between deviatoric stress, 7;;, and strain rate, ¢,

of:
Tij = BE(%_I)éij (2.5)

where B is a rheological parameter, n is a power law exponent, and E? = (1/2) 32, éij
¢;; 1s the second invariant of the strain-rate tensor. Mantle rocks are thought to deform
by dislocation flow of olivine in the lithosphere, which can be described using (2.5)
where n is about 3 to 3.5 [e.g., Kohlstedt, Fvans, and Mackwell, 1995]. It is useful to
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relate stress directly to strain rate as:

T = 2né;; (2.6)
where effective viscosity, 1, depends on strain rate according to:
EGY) (2.7)

If n = 1 for Newtonian viscosity, the material exhibits a linear relationship between

stress and strain rate, and n = B/2 is a constant.

2.2.1 Review of Previous Studies

If viscosity is Newtonian (n = 1), perturbations to an unstable density structure
grow exponentially with time [e.g., Chandrasekhar, 1961; Conrad and Molnar, 1997].
Thus, if Z is the magnitude of a sinusoidal perturbation in vertical displacement, and
w = 0Z/dt is the downward velocity, both grow with the exponential growth rate ¢,
as given by:

dw dz

i d — =qgZ 2.
7 qw an 7 q ( 8)

where ¢ can be expressed as a function of the material properties of the fluid:

_ Apgh ,
= ——q

) (2.9)

Here Ap is the density difference across the unstable portion of the layer, i is a
typical length scale associated the thickness of this layer, and 7 is the Newtonian
viscosity at the bottom of the layer. The dimensionless growth rate, ¢”, is a function
of the variation of both density and viscosity with depth, and of the wavelength of
the perturbation.

A density instability in a fluid with non-Newtonian viscosity (n > 1) grows super-
exponentially, as described by Canright and Morris [1993] and Houseman and Molnar

[1997]. As the amplitude of a growing instability increases, strain rates also increase,
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so the effective viscosity 1, as given by (2.7), decreases. Houseman and Molnar [1997]
suggest approximating F.. ~ w/h in (2.7) to define a time-varying effective viscosity
to be used to define n in (2.9). Then, with such a definition for ¢ in (2.9) inserted

into (2.8), they obtain an expression for super-exponential growth:

w=[er (") T me e - = (2.10)
where t; is the time at which velocity becomes infinite, at which point the instability
must be detached from the dense layer, and C" is a dimensionless measure of the rate
of growth, equivalent to ¢” and dependent on the variation of density and B with
depth, and on the wavelength of the perturbation. Houseman and Molnar [1997]
suggest the following nondimensionalization of time and length:

t" =+t (M) and 2 = (2.11)

d
B h

which reduces (2.10) to:

W = [C” (” - 1) (# — t”)](%) (2.12)

If n = 1 for Newtonian viscosity, using (2.11) to make (2.8) dimensionless yields
dw” [dt" = ¢"w". Because the dimensionless time scale of (2.11) contains no informa-
tion about the variation of density or viscosity with depth, this information must be

incorporated into ¢” or C".

2.2.2 Available Buoyancy

Because both ¢” and C” depend on the details of how density and viscosity vary
with depth, their values must be redefined and recalculated for every given density
and viscosity profile. In what follows, we use a heuristic analysis of a Rayleigh-Taylor
instability to develop a more general scaling law to account for the variation of density

and viscosity with depth in a layer. In doing so, we define new dimensionless growth
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rates, ¢’ and C’; which are distinguished from ¢” and C” by depending only on the
wavelength of the perturbation.

Consider a layer positioned between z = —h and z = 0 of density p; overlying
a halfspace of density py < p;. A sinusoidal perturbation of the boundary between
them creates a deviatoric stress field. Continuity of normal stress across the perturbed
boundary can be expressed as a difference in stresses across a line representing the
unperturbed boundary, by taking the additional overburden pressure due to the de-

formation into account [e.g., Ricard and Froidevauz, 1986]:

01,22 — 02, = (p1 — p2)g 7 cos(kx) (2.13)

where k = 27 /X is the wavenumber of the perturbation in vertical displacement and
7 is its amplitude. Thus, the stresses that drive the instability are generated by the
anomalous mass of material that has crossed the original boundary between the layers.
These driving stresses can be separated into deviatoric stress and pressure, as shown
by (2.4). The deviatoric stress, 7., can be directly related to fluid deformation using
(2.6). The fluid flow itself also creates a dynamic pressure, p, which varies laterally.
The amplitudes of both 7., and p should both depend linearly on the right hand
side of (2.13) because both components are associated with the perturbation to the
density field, but their relative values should vary with wavenumber and depth. In
the numerical studies we perform later, we find that the depth dependences of 7.,
and p are similar throughout a deforming layer, except where the deviatoric stress
is necessarily zero, such as near a rigid boundary. As a result, we can relate the
deviatoric stress directly to the total stress, and treat o, as proportional to 7., in the
following analysis, remembering that this approximation overestimates the deviatoric
stress near rigid boundaries. Because the fraction of the total stress that is deviatoric
depends on the wavenumber k, we proceed using only proportionalities when dealing
with stress. The uncertainty in proportionality will later be accommodated in a factor
that depends only on wavenumber.

To develop a simple scaling law that takes into account the variation of material
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properties with depth, we must apply the driving stresses given by (2.13) to a con-
tinuously varying density field. Let us simplify the problem by assuming that shear
stresses, 7., are zero. Although this is clearly not valid for the entire flow field, sym-
metry allows us to make this approximation where the deflection of the boundary is
at a maximum (near x = 0 in (2.13)). We approximate the driving stress, 7,., as a
function of depth by representing the density field as a series of infinitesimally thin
layers with density contrast dp between them. Then the maximum driving stress,
located at @ = 0, can be written in analogy to (2.13) as:

dr..(z)  dp(z)
dz dz

9% (2.14)

Suppose that density varies with temperature, T', according to:

p(T) = pm + pma(Ty = T) (2.15)

where p,, is the background mantle density, « is the coefficient of thermal expansion,
and T, is the uniform temperature of fluid below the cold upper layer [e.g., Turcotte
and Schubert, 1982, p. 179]. Integrating (2.14) from —z,,, a point at the bottom of
the dense layer where T' = T),, and the driving stress is zero, to a shallower depth of
—z yields:

rn(2) ~ pmgalTo — T(2))7 (2.16)

where we treat the perturbation amplitude, Z, as constant at all depths in the layer.
Because the perturbation Z must go to zero at a rigid surface, we recognize that
(2.16) overestimates the stress as z approaches zero.

To relate the driving stresses to the growth of the instability, we use the fact that

the vertical strain rate (é.,) integrated from —z,, to the surface along the vertical

centerline of the sinusoidal perturbation (here é,. = 0) is equal to the downward
velocity of the perturbation at z = —z,,:
d7z 0
w(—zn) = o :/ ¢, (2)dz (2.17)
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This relation should yield the downward velocity at any depth z, not just —z,,, but we
make this choice because we later relate strain rate to stress, and we wish to include
the contribution to the downward velocity from stresses throughout the entire layer.

We proceed assuming a general constitutive relation because we will later consider
the case in which n > 1. Assuming incompressibility as in (2.2) and that shear strain

rates are small near the perturbation’s maximum, I ~ ¢,.. Then applying (2.5) to

(2.17) yields:
dz 0 T..(z "

where we allow the rheological parameter, B, to vary with temperature. Defining the
driving stress using (2.16), and again assuming that the perturbation amplitude, 7,
does not vary with depth, we find:

w = Cfl—f ~ /_OOO ('Omgo‘(BT(mT(_Z;(Z))Z)n dz (2.19)

where we use the fact that the driving stress below the layer is zero to expand the lower
integration limit. We can simplify this integral by nondimensionalizing temperature,

T’, and the rheological parameter, B'(T"):

and B'(T") = (2.20)

where Ty = T, — T} is the difference between the temperature at depth, 7},, and the
surface temperature, Ty, and B,, = B(T,,). Thus, T’ varies between 1 at depth and

0 at the surface. We nondimensionalize length according to:
2=z/h (2.21)

where h is a length scale associated with the thickness of the unstable layer. Using

these nondimensionalizations, we define functions F,, and f,;, according to:
o /1 —T'(z")\" 0
Fo= [ oo | 4= [ (=) ¢! 2.22
- (B’(T'<z'>>) S U (222)

30



Thus, F, is the integral through the layer of f,; to the n power. Using this definition
of F,, and the nondimensionalizations above, we can simplify (2.19) to:
d7z C'\" ( pmgaTo\" .

w= "= (;) (%) hE,Z (2.23)
where (" is analogous to the super-exponential growth rate C' defined by Houseman
and Molnar [1997], derived with a different approach for a range of constant prop-
erties. This expression yields exponential growth of the perturbation amplitude 7 if
n = 1 and super-exponential growth if n > 1.

The function fy; in (2.22) weights the negative buoyancy at each point in the
thermal structure by the inverse of its viscosity coefficient. For highly temperature-
dependent viscosity, the coldest regions, although quite dense, do not yield large
values of f,;,. Instead, the largest values of f,;, occur in relatively warm, less dense
regions near the bottom of the thermal structure where viscosity is small. Thus, the
weighting offered by f,, accounts for the negative buoyancy of strong material being
less important than that of weak material in driving a convective instability. As a
result, f,; should scale the contributions of fluid at different depths to the total driving
buoyancy. We term F),, the integral of negative buoyancy divided by viscosity, the
“available buoyancy,” because it measures the total negative buoyancy “available”
for driving a convective instability. Insofar as F,, properly takes into account the
variation of density, viscosity, and temperature with depth in an unstable layer, the
dimensionless growth rate in (2.23), C’, should depend only on the wavelength of the
initial perturbation. We will test this statement, and thus test the validity of this
scaling of the growth rate using the “available buoyancy,” by performing a series of

numerical experiments on convectively unstable fluids.

2.2.3 Newtonian Fluids

If n =1 for Newtonian viscosity, (2.23) becomes:

dz B PmgToh Fy

= Z 2.24
a ! 20m ( )
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where C' is replaced by ¢'. The perturbation, 7, grows exponentially with growth

rate:
Pmgaloh

F (2.25)
20

q9=4q

If Ap = pmaTy, this definition of ¢’ is the same as that given in (2.9), except that now

our growth rate scales with the parameter F, so ¢’ should vary only with wavelength.

2.2.4 Non-Newtonian Fluids

To analyze non-Newtonian fluids (n > 1), we take the time derivative of (2.23):

d N\ - T\
d_;”: (%) (%) hF,nZ Dy (2.26)

We eliminate the perturbation size, Z, in favor of the velocity, w, using (2.23):

d mga’l n _
G = O (2.27)

Houseman and Molnar [1997] show that integration of (2.27) yields:

w:[a(nil)mﬁjgaww“”Wn—w(fﬂ (225

which is similar to (2.10) and yields super-exponential growth, but includes the “avail-
able buoyancy” parameter, F,. This suggests a nondimensionalization of distance and

time of:

Apgh\"
=t (%) r, and J=2 (2.29)

which is similar to (2.11), but now includes information about how B and p vary with
depth. Thus, €’ should depend only on the perturbation wavelength. Then (2.28)

becomes:

W = [0' (” - 1) (1 — t’)](%) (2.30)

which is the same as (2.12), but uses the new nondimensionalization of time. The time

1) 1s, of course, a function of the size of the initial perturbation, 7). By integrating
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(2.30), Houseman and Molnar [1997] show that:

n

720" = (n — 1) (g)n (t) —t') (2.31)

from which we can relate ¢, to Z; by setting ¢’ = 0:

. n\" Z(l)(l_n)
() 2 -

2.2.5 The Role of Diffusion of Heat

Diffusion of heat smooths, and thus diminishes, perturbations to an unstable density
structure. To quantify thermal diffusion, we compare the rates at which temperature
anomalies are advected to those at which they are diffused, in a manner similar to that

used by Conrad and Molnar [1997]. For conductive transfer of heat in one-dimension:

oT o*T

where k the the thermal diffusivity [e.g., Turcotte and Schubert, 1982, p. 154]. We
consider thermal diffusion in the horizontal direction because horizontal variations
in density grow unstably. Consider perturbations to the background temperature
field of the form T ~ cos(kx). Then (2.33) shows that such perturbations decay

exponentially with time as:
— = —k—T = —q,T (2.34)

which defines the exponential decay rate, g;.

We wish to compare the rate at which temperature perturbations are diffused to
the rate at which they are advected. For the general case of non-Newtonian rheology,
we can obtain an instantaneously valid exponential growth rate by comparing (2.23)

to the exponential growth equation for Z(¢) in (2.8). This gives an exponential growth
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rate, ¢, of:

CON" [ pmgcTo\"
o Q) (o s

This expression varies with perturbation amplitude, Z(t), so that ¢, increases as 7
does, yielding the super-exponential growth predicted by (2.28). For a given value
of Z, however, it gives an exponential growth rate for advection of temperature per-
turbations, which we compare to the rate of exponential decay by taking the ratio
Gn/qa. We simplify by ignoring all constants and assume that the fastest growing
wavelength scales with the layer thickness, so A ~ h. In doing so, we obtain a dimen-
sionless quantity that compares the rate of advection to the rate of thermal diffusion,

and thus resembles a Rayleigh number:

Ra,, =

. T nh3zn—1
('0 ga 0) F, (2.36)

nB,,

K
For Newtonian viscosity, n = 1, yielding:

_ pmgaToh®

Ra1 F1 (237)

26N,

which is independent of Z. This “Rayleigh” number, Ra,, is a measure of the con-

vective instability of a thermal boundary layer, as first described by Howard [1964].

2.3 Numerical Experiments

To carry out experiments on both Newtonian and non-Newtonian fluids with differ-
ent “available buoyancy,” we use the finite element code ConMan, which can solve
the coupled Navier-Stokes and energy equations appropriate for thermal diffusion,
incompressibility, and infinite Prandtl number [King, Raefsky and Hager, 1990]. This
code has been found capable of accurately determining the exponential growth rate
of an isothermal Rayleigh-Taylor instability [van Keken et al., 1997]. We initiated
convective instability by imposing a temperature field in which cold material over-

lies warmer material. Because we assign a thermal expansivity «, the colder fluid is
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denser, and flows downward into the underlying warm fluid as the instability grows.
Two initial temperature fields are used (Figure 2.1). Conductive cooling of a
halfspace, appropriate for the cooling of oceanic lithosphere, yields a temperature

profile given by an error function:

T(z)="Ts+ Ty erf(—z/h.) (2.38)

where h. = 2y/kt. and {, is the time during which the halfspace has cooled [e.g.,
Turcotte and Schubert, 1982, pp. 163-167]. A linear temperature profile results from

conduction of heat across a fixed thickness, h;:

T(z)="Ts+ To(—z/M) for 0>2>—N

(2.39)
T(z)="T, for z < —Mhy

To allow instabilities to develop, we perturb the temperature field sinusoidally in the
horizontal dimension with a wavelength A. In particular, we allow the length scales

of the thermal profile to vary as:

he(x) = 2\//<;_tc\/1—|—pcos(27r:1;/)\)

2.40
hi(x) = hl\/l—l—pcos(%r:z;/)\) ( )

where p is a constant that specifies the amplitude of the perturbation. Thus, the
thickness of the unstable temperature structure varies between ii\/T + p and hy/1 — p.
This corresponds to a sinusoidal variation in the cooling time, ¢., which has no physical
relevance to us, but imposes a smooth perturbation.

So that the unstable layer occupies a constant proportion of the finite element
grid, we varied the size of the grid so that its depth is 8.27 times h. or 7.33 times
h;. The horizontal dimension of the box is determined by the wavelength at which
the instability is perturbed, which also scales with h. or h;. We use 90 elements in
the vertical direction, with 60 elements in the upper half of the box, giving double
resolution in the region where the most of the deformation occurs. The number of

elements in the horizontal direction is varied so that each element in the upper half
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of the box is square.

Boundary conditions on the box are rigid on the top surface, free slip along the
two sides, and zero stress along the bottom boundary. Although the Earth’s surface is
free slip, we choose a rigid top because we wish to study convection beneath the cold
upper lithosphere, which is strong and therefore acts as a rigid upper boundary to
the fluid beneath it. Furthermore, the free slip boundary condition generally results
in flow at wavelengths comparable to the depth of the entire fluid, unless viscosity
is highly temperature-dependent [e.g, Solomatov, 1995; Jaupart and Parsons, 1985].
In our case, this leads to flow at infinite wavelength because we use a no stress
bottom boundary condition. For the Earth, the free-slip boundary condition results
in plate-scale flow, which is not under study here. Nevertheless, we do perform a few
calculations with a free slip upper boundary for comparison.

The no stress bottom boundary condition permits fluid to flow in and out of the
bottom boundary so that material is not constrained to circulate within the box,
which could impede flow. The box is sufficiently deep, however, that the base of a
growing instability, defined by the location of the T” = 0.9 isotherm, only penetrates
the top 30% of the box before the instability begins detach from the overlying layer.
To see how this bottom boundary may effect our results, we tried imposing zero
horizontal velocity on the bottom boundary while maintaining free flow of material
in the vertical direction. This boundary condition produces unstable growth that is
less than 107°% slower than it is for the no stress boundary condition, indicating that
our choice of the latter does not significantly speed unstable growth.

Because we are studying the time-dependence transient phenomena, the accuracy
of our time stepping routine is important. We use an explicit predictor-corrector algo-
rithm, which should be accurate to second-order [Hughes, 1987, pp. 562-566]. After
several tests, we chose a time step that is one tenth that of the dynamically chosen
Courant time step. Increasing the temporal resolution further produced measured
growth rates that were larger by only a few percent. Because we do not hope to be
able to measure growth rates to better than one, and possibly two, significant figures,

this degree of error was deemed acceptable.
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We allow density, p, to vary with temperature according to (2.15). As a result,
density, and thus the buoyancy that drives the instability, varies with depth (Fig-
ure 2.1). The temperature dependence of the rheological strength parameter, B, is

generally given as:

B(T)::Boexp<;§%—) (2.41)

where By is an initial value of B, F, is an activation energy, R is the universal gas
constant, and T' is temperature in Kelvins [e.g., Kohlstedt, Fvans, and Mackwell,

1995]. We can define By such that B(T,,) = By, from which we approximate (2.41)

as:
E (T, —T)

B(T) = By, exp( T

) (2.42)
If we define a variable r = exp(E,To/nRT?2), we can rewrite (2.42) as:

T, —T)
1o

B(T) = By, exp(In(r) (2.43)
Thus, the parameter r describes how strongly B varies with temperature. In addition,
because n(Ts) = rnm,, r represents the total variation in B across the fluid.

By increasing r, we increase the strength of the cold, dense portions of the un-
stable density structure and thus decrease their ability to participate in a convective
downwelling. The variation of the function f,;, as given by (2.22), with depth (Fig-
ure 2.2) provides a measure of the relative contributions of each level in the unstable
density profile to the convective instability as a whole. For constant B (r = 1), the
greatest contribution to the instability occurs in the coldest, densest regions at the
surface of the layer. As this cold material is strengthened, however, by an increase
in r, the greatest contribution occurs deeper in the layer, where material is suffi-
ciently warm to be weak enough to participate in the downwelling. For the most
strongly temperature-dependent viscosity (r = 1000), only the bottom portion of
the dense layer can contribute. This region is thinner for the linear profile than the
error-function profile, because the latter contains more warm material.

h

We argue above that the integral of the n' power of the contribution function,

37



O '\\ I O h !
\ 1 !
N ! 3
N i !
-0.5; L i’ 1 705 '\’
aError oy | ! ;
Function =~ t [, "
o = '/ —
PECI FE r=1000 ' / = 4
N o--. =100 N
_aq I .
_— r—iO o b) Linear
..... -r=1 # N
-1.5f ’ Lo ::1880
— =10
..... - r=1
-2 -2 ‘
3 _ZI f - 0 -3 —ZI ¢ -1 0
ogf %9 a0

Figure 2.2: Plot of the log of the “available buoyancy” function, fu5, given by (2.22) as
a function of dimensionless depth for the (a) error-function and (b) linear temperature
profiles. For each profile, f,;(z') is given for four temperature dependences of viscosity,
using values of r of 1, 10, 100, and 1000 in (2.43). The decrease of f,;, with increasing
viscosity contrast is shown by the decrease of f,, as 2z’ approaches zero, as r increases.
The integral of f7, with depth gives the total “available buoyancy,” F,, (Figure 2.3).
For n > 1, f7 can be represented by multiplying the horizontal axis by n.

fr, should scale with the growth rate of the instability. We calculated F,(r) by
numerically integrating the curves given in Figure 2.2 for both error-function and
linear temperature profiles, and for n = 1 and n = 3 (Figure 2.3). Because f,; <1,
F5 < Fy for all r, and F5 decreases significantly faster than Fj with increasing r
(Figure 2.3). The linear temperature profile exhibits smaller values of F,, than does

the error-function profile, especially for large r, because less warm material is available

to participate in the instability (Figure 2.2).
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Figure 2.3: The total available buoyancy, F,,, as a function of log r for both the error-
function and linear temperature profiles, and for n = 1 and n = 3. F), is calculated
by integrating f,» (Figure 2.2) according to (2.22). As the temperature dependence
of viscosity increases with increasing r, more of the negative buoyancy becomes un-
available for driving a convective instability because of its increased strength. This
is shown by the decrease of F),, with r.
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2.4 Results for Newtonian Viscosity

We first examine the role of temperature-dependent Newtonian viscosity on the expo-
nential growth of convective instability for an error-function temperature profile (Fig-
ure 2.4). Increasing the temperature dependence of viscosity decreases the amount of
material that participates in the instability. For example, only the bottom isotherm
(T" = 0.9) shows significant deflection at large amplitudes for r = 1000 (Figure 2.4d),
while nearly the entire unstable layer participates in the downwelling for r =1 (Fig-
ure 2.4a). For each value of r, the shallowest significantly deflected isotherm lies near
the maximum in the corresponding profile of f,; in Figure 2.2a. Thus, the curves
in Figure 2.2 appear, at least qualitatively, to represent the regions of the dense
layer participating in the convective instability. The exception is for r = 1. The
rigid boundary condition permits no deflection at the surface, but fu,(r = 1) has a
maximum there (Figure 2.2).

When made dimensionless without scaling by “available buoyancy,” the time for
an instability to reach a given amplitude increases as the temperature dependence of
viscosity increases (Figure 2.4). We can quantify this effect by calculating a dimen-
sionless growth rate, as for a Rayleigh-Taylor instability, for each viscosity profile. To
do this, we measure the downward speed, w, of the T” = 0.9 isotherm as a function
of time. Because this isotherm is near the bottom of the unstable layer, its speed
gives us a measure of the growth of the entire instability. We nondimensionalize (2.8)
using (2.11), which gives:

Inw” = Inwg + ¢"t" (2.44)

where w{ is the initial dimensionless velocity. If growth is exponential, a plot of In w”
versus t” should then yield a linear relationship with slope equal to ¢”. The initially
linear slopes shown in Figure 2.5a for the four cases shown in Figure 2.4 indicate
that the instability begins its growth exponentially. Following the initial exponential
growth stage, the instabilities accelerate slightly as non-linear effects become more
important at large amplitudes. This behavior is also observed by Houseman and

Molnar [1997] who attribute the acceleration in part to the selection of the fastest
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Figure 2.4: Temperature profiles showing the growth of a convective instability from
an initially error-function temperature profile perturbed using (2.40) with p = 0.04
and X = A/h, = 4.14. Shown are isotherms for 7" of 0.1, 0.3, 0.5, 0.7, and 0.9, with
the lower temperatures closer to the surface. Sets of profiles for four values of r of
1, 10, 100, and 1000 are shown in parts (a) through (d). In each part, two sets of
isotherms show different stages of growth. We chose profiles for which the maximum
depth to the 77 = 0.9 isotherm was between 1.5 and 2.0h. (dashed lines) and between
2.5 and 3.0h. (solid lines). The times for each are given and are nondimensionalized
using (2.11) without the “available buoyancy.” It is clear that the profiles with
more strongly temperature dependent viscosity require more time to reach a given
amplitude and remove a smaller amount of material.
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growing wavelength at large amplitudes. Because we allow instabilities to grow to
very large amplitudes, this non-linear phase is followed by a period in which growth of
the instability begins to taper off and the downwelling plume approaches a constant
velocity. When the instability detaches from the unstable layer, it should reach a
“terminal” velocity, a condition described approximately by Stokes flow, the descent
of a heavy sphere in a viscous fluid [e.g., Turcotte and Schubert, 1982, pp. 263-268].

Growth rates, ¢”, show a strong dependence on the temperature dependence of
viscosity, with larger r yielding slower growth. When is time is nondimensionalized
using (2.29) to include the “available buoyancy” (Figure 2.5b), however, the four
curves nearly collapse onto a single curve, with approximately equal dimensionless
exponential growth rates, ¢’. This indicates that the “available buoyancy” scales the
affect of the temperature dependence of viscosity. We attribute the relatively low
dimensionless growth rate for r = 1 to the influence of the rigid top boundary of the
fluid. As discussed above, this condition does not permit this instability to utilize the
significant “available buoyancy” near the surface of the layer for r = 1 (Figure 2.2),
so the scaling with F overestimates the amount of dense material that participates in
the instability. For r > 1, there is little contribution to the “available buoyancy” from
the surface because the material is strong there, and F; more accurately represents
the amount of material available for driving a convective instability.

Growth rates nondimensionalized without “available buoyancy” depend on both
the temperature dependence of viscosity and on the wavelength of the initial per-
turbation (Figure 2.6a). When scaled by “available buoyancy,” however, the three
curves for r > 1 approximately collapse onto a single curve that depends only on
wavenumber (Figure 2.6b). There remains a difference at short wavelengths (k' > 2),
some of which is due to the presense of the rigid lid, as discussed above. Similar cal-
culations using a free slip upper boundary condition (Figure 2.7) show that for short
wavelengths, the “available buoyancy” scaling works slightly better with a free top
(compare Figures 2.6b and 2.7). Growth rates at long wavelengths (small &) are not
properly scaled if top boundary slips freely because in this case the preferred wave-

length scales with the depth of the box and not the depth of the unstable layer. For
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Figure 2.5: Plots of In(w”) or In(w’), the natural log of the dimensionless downward
speed of the T" = 0.9 isotherm at 2’ = 0, versus dimensionless time, ¢’ or ¢, for
the four convective instabilities profiled in Figure 2.4. Time is nondimensionalized
using (2.11) in (a), indicated by double primes, and by (2.29) in (b), indicated by
single primes. Thus, (b) scales rates with “available buoyancy,” but (a) does not. For
each value of r, the symbols represent output from finite element calculations, and
lines represent linear fits to the initial slope, the value of which is the dimensionless
growth rate, ¢’ or ¢”. The growth rates scaled by “available buoyancy” are nearly
independent of r, showing that this scaling accounts for the temperature dependence
of viscosity. The big symbols indicate the times for which temperature profiles of the
instability are given in Figure 2.4.
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the nearly isoviscous cases of r = 1 and r = 10, this allows the longest wavelengths
to grow most rapidly (Figure 2.7), but if viscosity is highly temperature-dependent,
growth rates decrease with wavelength, as they do for a rigid lid (compare r = 1000
curves in Figures 2.6b and 2.7). Thus, the “available buoyancy” does a better job
of scaling the temperature dependence of viscosity if the upper boundary is free slip,
but only for short and intermediate wavelength perturbations.

For the rigid top, we also attribute some of the unscaled differences in ¢’ at large
wavelength (Figure 2.6b) to the decrease of the wavelength of maximum growth rate
with increasing r. As the viscosity becomes more temperature-dependent, the thick-
ness of the unstable layer that participates in the instability decreases. This thick-
ness should scale with the dominant wavelength [Conrad and Molnar, 1997; Molnar,
Houseman and Conrad, 1998], so that the maximum value of ¢” or ¢’ should occur
at shorter wavelengths for larger r, as can be seen in Figure 2.6b. As a result, ¢’ at
short wavelengths is smaller for smaller values of r.

Similar calculations using a rigid top and an initially linear temperature profile
(Figure 2.8) yield wavelengths of maximum growth rate that depend on r more than
they do for an error-function temperature profile (Figure 2.6). We attribute this to the
presence of more warm material, and thus more “available buoyancy,” near the bottom
of the error-function profile than the linear profile (Figure 2.2). Because this material
always participates in an instability, the effective thickness of the unstable part of the
layer is less variable for the error-function profile than it is for the linear profile. Thus,
the effective thicknesses of the “available buoyancy” curves, f,;, in Figure 2.2 depend
more on r for the linear profile. Because the wavelength of maximum growth rate
should scale approximately with this thickness, its values show a greater variation for
the linear temperature profile.

The “available buoyancy” scaling of the growth rate appears to account for the
temperature dependence of viscosity in the results for the linear temperature profile
(Figure 2.8). Because the wavelength of maximum growth rate varies with r, the
curves for different r do not fall together when scaled with the “available buoyancy”

(Figure 2.8b). The value of the maximum growth rate, however, is the same for all
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Figure 2.6: Plots of dimensionless growth rate, ¢” or ¢, versus dimensionless

wavenumber, k' = 27 /)X, with time and length scaled using (2.11) in (a) and (2.29) in
(b). Thus, (b) scales rates with the “available buoyancy.” We used an error-function
initial temperature profile perturbed using (2.40) with p = 0.04.
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Figure 2.7: Similar to Figure 2.6b, but for free slip boundary conditions on the
top surface, again using the “available buoyancy” to scale time. A comparison to
Figure 2.6b shows that for short wavelengths (£ > 2), the “available buoyancy”
scaling accounts for the temperature dependence of viscosity slightly better if the
upper boundary condition is free slip. At long wavelengths (k' < 2), however, the
“available buoyancy” scaling shown here breaks down because, for free slip, the longest
wavelengths grow most rapidly, except for large r.

r > 1. (For r = 1, the presence of the rigid surface causes this scaling to overesti-
mate the actual growth rate, as discussed above.) Furthermore, the maximum value
of ¢” for the linear temperature profiles is about 0.18 (Figure 2.8b), which is only
about 20% larger than the maximum value of about 0.14 found for the error-function
temperature profile (Figure 2.6b). This agreement is more impressive when we recall
that for r = 100 and r = 1000, the “available buoyancy” scaling differs by a factor of
approximately two between the linear and error-function temperature profiles (Fig-
ure 2.3). The agreement of growth rates for different temperature profiles suggests
that the “available buoyancy” scaling provides a dimensionless growth rate that is
independent of the functional form of the initial temperature profile.

If viscosity is Newtonian (n = 1), growth rates for a Rayleigh-Taylor instability
can be predicted from linear theory. We use the analysis of Conrad and Molnar

[1997] to predict growth rates for an unstable layer with a linear temperature profile
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Figure 2.8: Similar to Figure 2.6, for an initially linear temperature profile, perturbed
using (2.40) with p = 0.04. In this case, however, symbols show growth rates esti-
mated from the finite element calculations and lines show growth rates predicted by
Rayleigh-Taylor linear theory, as given by Conrad and Molnar [1997].
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and exponentially varying viscosity. Such calculations yield growth rates that agree
to within 10% of those measured here (Figure 2.8). The greatest deviation occurs
at short wavelengths, but tests show that increasing the spatial resolution of the
finite element grid reduces this disagreement. The agreement between Rayleigh-
Taylor theory and our calculations, which include thermal diffusion, indicates that
the convective instability approximates a Rayleigh-Taylor instability, at least for the
high values of Ra; used here. The agreement also indicates that ConMan accurately
simulates the convective instability.

We investigated the conditions for the stability of a cold, dense layer by measuring
q for different values of the stability parameter, Ra, (Figure 2.9). We calculated
growth rates for a linear temperature profile and & = 3.1, chosen because it is near
the maximum of the ¢’ versus k' curves for r = 10, 100, and 1000 (Figure 2.8b). The
three values of ¢/( Ray) for these values of r differ from one another by less than 10%,
when dimensionless growth rates are calculated using the “available buoyancy.” For
large values of Ray, ¢' is approximately equal to 0.18, as we observed in Figure 2.8b.
When Ra; is less than about 500, growth is slowed, and for Ra; less than about
50, growth is stopped altogether. This decrease in ¢ is due to the suppression of
temperature perturbations by thermal diffusion as Ra; decreases.

The ability of thermal diffusion to suppress unstable growth should vary with
wavelength because small wavelength perturbations are most susceptible to smoothing
by thermal diffusion in the horizontal direction. This is evident in Figure 2.10, where,
for large k', growth is stopped or significantly slowed for the smallest values of Ra;. At
longer wavelengths, however, growth rates for this same value of Ra; become greater
than those of the larger Ray calculations. Long wavelength perturbations are less
prone to smoothing by horizontal thermal diffusion, and for sufficiently small Raq,
they appear to grow more rapidly than those with larger Ra;. We attribute relatively
high dimensionless growth rates at long wavelengths also to thermal diffusion, but
in the vertical direction. If the layer cools sufficiently during advective growth, its
thickness and the amount of unstable material will increase so that the instability

proceeds with more “available buoyancy” than the initial conditions suggest. This
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Figure 2.9: Plot showing how the dimensionless growth rate, ¢, varies with the
stability parameter, Ray, for a layer with Newtonian viscosity (n = 1) and for r of
10, 100, and 1000. Scaling is with the “available buoyancy,” as given by (2.29). A
linear temperature profile, perturbed using (2.40), X = A/h; = 4.07, and p = 0.04
giving Z) = 1.98%, was used in each case, and we varied Ra; by varying n,,.

causes growth rates that are scaled by the original amount of “available buoyancy”

to increase.

2.5 Results for Non-Newtonian Viscosity

We performed several runs using a non-Newtonian viscosity with power law exponent
n = 3, and a variable initial perturbation size. We use an initial perturbation to an
error-function temperature profile given by (2.40) in which ¢. varies by 20%, giving
a maximum downward perturbation of Zy = 0.0954h.. The results (Figure 2.11)
are qualitatively similar to those presented for Newtonian rheology in Figure 2.4 in
that a smaller fraction of the dense layer is removed in a longer period of time for
layers with more highly temperature-dependent rheology. The retarding by a highly

temperature-dependent rheology, however, is more pronounced for non-Newtonian
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Figure 2.10: Plots of dimensionless growth rate, ¢', versus dimensionless wavenumber,
E' = 2 /)N, for an initially linear temperature profile, perturbed using (2.40) and
p = 0.04. All curves use r = 100, and Ra, is varied by varying n,,. Time is scaled
using (2.29) to include the “available buoyancy.”

viscosity than it is for Newtonian viscosity. For example, the Newtonian runs with
r = 1000 (Figure 2.4d) take about 8 times as long to reach the same amplitude as
the r = 1 runs (Figure 2.4a), when time is nondimensionalized without the “available
buoyancy”. This ratio is closer to 8%, or 500, for the non-Newtonian cases (Fig-
ures 2.11a and 2.11d). Thus, for n = 3, non-Newtonian viscosity approximately
cubes the effects of temperature dependence of B. This is an indication that our
definition of the “available buoyancy” in (2.22), where F,, ~ f7 may be applicable
for n > 1.

Some of the temperature contours show a deflection toward the surface near the
left edge of the calculations shown in Figure 2.11, indicating that temperatures do not
always increase away from the center of the instability. This observation is somewhat
surprising because it is not what we found for Newtonian rheology (Figure 2.4). One

explanation could be numerical error. Travis et al. [1990] show that errors in the
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Figure 2.11: Similar to Figure 2.4, but for temperature profiles showing the growth
of a convective instability in a non-Newtonian fluid (n = 3) from an initially error-
function temperature profile that is perturbed using (2.40) with p = 0.2 and X' =
AJh. = 4.14. The times for both stages of the instability are given, and are scaled
using (2.11), without the “available buoyancy.”
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temperature field tend to be maximized near the stagnating regions of a finite-element
grid. If numerical error is a problem, however, it is not diminished by increasing the
spatial resolution of the finite element grid or by allowing the surface node nearest
the corner to move freely in the horizontal direction to prevent “grid locking.” Fur-
thermore, other numerical codes produce similar results [U. Christensen, personal
communication, 1998]. Another explanation could be related to the stress dependent
viscosity, which would tend to increase the effective viscosity of the stagnant corner
region due to the low strain rates there. The effective viscosity of the material just
to the side of the stagnant corner, however, should decrease due to the presence of
significant strain rates that advect temperature contours around the corner from the
side. For increasingly temperature-dependent viscosity, the stagnant corner becomes
less pronounced, because it is not associated with the rigid lid, and deeper, because
the zone of active deformation is shifted downwards (Figure 2.11). In any case, the net
effect of this phenomenon, which represents less than a 10% difference in temperature
across a small portion of the entire downwelling region, should be small.

The runs with non-Newtonian viscosity show a greater acceleration of the insta-
bility with increasing time than do the Newtonian results. For Newtonian viscosity,
about 15% of the total time is spent between the two temperature profiles shown in
Figure 2.4, compared to between 1.5 and 3% for runs with non-Newtonian viscosity
(Figure 2.11). Clearly growth for non-Newtonian viscosity accelerates faster than the
exponential growth we observe for Newtonian viscosity, as Houseman and Molnar
[1997] demonstrate for the Rayleigh-Taylor instability. To test Houseman and Mol-
nar’s [1997] scaling law, we again determine the velocity of the 7" = 0.9 isotherm
as a function of time for the four calculations contoured in Figure 2.11. According
to (2.12), a plot of w"(=2/3) as a function of dimensionless time, ¢”, should be linear,
with slope equal to —2C"/3 and a time intercept of ¢;/. Because t varies by orders
of magnitude with changes in r (Figure 2.11), we rescale both axes by dividing by ¢}/
(Figure 2.12a). Thus, all curves have the same time intercept at ¢”/t} = 1, and their
relative slopes can be compared easily.

The relationships between w”(=2/%) and " are clearly linear for all r (Figure 2.12a),
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Figure 2.12: Plots of (a) w"(=%/?) /1} versus " /1!, where double primes indicate a scal-
ing of time without the “available buoyancy” using (2.11) and of (b) w(=2/3) /#} versus
t'/t;, where single primes indicate a scaling of time with the “available buoyancy” us-
ing (2.29). We define w” or w' as the downward speed of the 7" = 0.9 isotherm at
' = 0, for the four convective instabilities profiled in Figure 2.11, and big symbols
in (a) represent times that are profiled there. We scale each curve with the time ¢}/
or 1 so that the four curves can be compared more easily. The linear relationships
shows that the instabilities grow super-exponentially, as predicted by Houseman and
Molnar [1997]. The lines show linear fits to the initial portion of the numerical results
(symbols), and we estimate values of C” and C” from the slope of this line.
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Figure 2.13: Similar to Figure 2.12b, but for free slip boundary conditions on the
top surface, again using the “available buoyancy” to scale time. A comparison to
Figure 2.6b shows that the “available buoyancy” scaling better accounts for the tem-
perature dependence of viscosity if the upper boundary condition is free, rather than
rigid.

and their slopes yield values of C” that decrease by a factor of about 7 as r increases
from 1 to 1000 (Figure 2.12a). When time is nondimensionalized using (2.29) to
include the “available buoyancy,” and w'(=%/?) is plotted versus ' (Figure 2.12b),
the discrepancy between the slopes for different r is improved, but C’(r = 1) and
C’'(r = 1000) still differ by about a factor of two. This scatter is considerably im-
proved to within about 15% of its mean value if the upper boundary condition is free
slip (Figure 2.13), but for the rigid top, large scatter is observed at all wavelengths
(Figure 2.14). As we found for Newtonian viscosity, a rigid surface boundary condi-
tion causes the “available buoyancy” scaling to overestimate the rate of growth for
the isoviscous case (r = 1), presumably because it includes a contribution from dense
material near the rigid surface that can not participate in the instability. For r > 1,
estimates of C’ fall within about 20% of their median value of C'(r = 100) = 0.47
(Figures 2.12b and 2.14b). For an initially linear temperature profile, maximum val-

ues of €' are between 0.4 and 0.5 for all » > 1 (Figure 2.15b). The isoviscous case,
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r = 1, again yields values of (" that are smaller than those for r > 1. For non-
Newtonian viscosity and a rigid top, the scaling of the temperature dependence of
viscosity using the “available buoyancy” is less impressive than it was for Newtonian
viscosity, but it still provides a useful method of approximating super-exponential
growth rates, and appears to be somewhat independent of the functional form of the
initial temperature profile.

Linear theory can not provide predictions of super-exponential growth rates, but
we can compare our calculations for the linear temperature profile to those of previous
numerical studies of the Rayleigh-Taylor instability. For r = 1, Houseman and Molnar
[1997] give a maximum value of C” = 0.37 for n = 3 and a linear density profile over an
inviscid halfspace, where we have divided by two to make their nondimensionalization
agree with ours, and by 2(1/3) to account for the difference in their definition of
E. This is nearly a factor of two larger than the maximum value we measure of
C = 0.21 (Figure 2.15a). Some (maybe half) of this discrepancy is expected because
we do not use an inviscid lower halfspace. We have adjusted estimates of C” by
Molnar, Houseman, and Conrad [1998] for the Rayleigh-Taylor instability of a layer
with B decreasing exponentially and density decreasing linearly over a halfspace of
constant B by dividing by a factor of (Inr)**)/" to make them agree with our
nondimensionalization. These adjustments yield C" = 0.096 for r = 10 and C" =
0.040 for r = 100. Our measurements of C” = 0.064 and C” = 0.026 (Figure 2.15a)
are about 70% those of Molnar, Houseman, and Conrad [1998]. This discrepancy may
be numerical, but could also be due to the different density structures at the bottom
of the layers; for Molnar, Houseman, and Conrad [1998], there is no diffusion of heat,
but with such diffusion, density, and hence mass, is redistributed before significant
growth occurs. Moreover, such a redistribution occurs where viscosity is lowest, and
thus at a level that affects the “available buoyancy” most. Thus, perhaps we should
not expect our estimates of C” to agree with those for a Rayleigh-Taylor instability.

The variation of C' with the stability parameter Ras (Figure 2.16) is similar to
the variation of ¢ with Ra; that we observe for Newtonian viscosity (Figure 2.9). For

non-Newtonian viscosity, three temperature dependences of viscosity are given for
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Figure 2.14: Plots of the dimensionless super-exponential growth rate, C" or C’,
versus dimensionless wavenumber, &' = 27 /)| with time scaled using (2.11) in (a)
and (2.29) in (b). Thus, (b) scales rates with “available buoyancy.” We used an

initially error-function temperature profile perturbed using (2.40) with p = 0.2.
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Figure 2.15: Similar to Figure 2.14, but for an initially linear temperature profile,
perturbed using (2.40) with p = 0.2. Again, (b) scales time with the “available
buoyancy,” while (a) does not.
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Figure 2.16: Plot showing how the super-exponential growth parameter, C’; scaled
with the “available buoyancy” using (2.29), varies with the stability parameter, Ras,
for a layer with non-Newtonian viscosity (n = 3) and for r = 10, 100, and 1000. We
show calculations for two choices of the initial amplitude, 7], of the perturbation to
an initially linear temperature profile; using (2.40) and p = 0.10 or p = 0.20, we
generate perturbations of 7, = 4.88% or Zj = 9.54%. We varied Ras by varying B,,.

two different amplitudes of initial perturbations, Z,, and the value of Ras, calculated
according to (2.36), takes into account the magnitude of the perturbations. For all
and for Ras > 1000, we observe fairly constant values of C’ equal to about 0.45. For
values of Ras less than about 100, the layer is convectively stable. The convective
stability of a layer depends on the wavelengths at which it is perturbed. As we
found for Newtonian viscosity, short wavelength perturbations are stable at smaller
values of Ras than are long wavelength perturbations (Figure 2.17), because they
can be diminished by diffusion of heat in the horizontal direction. Long wavelength
perturbations again promote increased instability because thermal diffusion in the
vertical direction increases the driving buoyancy of the layer as the instability grows

(Figure 2.17).
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Figure 2.17: Plot of C’ versus dimensionless wavenumber, &' = 27 /) for an initially
linear temperature profile, perturbed using (2.40) and p = 0.2. All curves use r = 100,
and Ras is varied by varying B,,. Time is scaled using (2.29) to include the “available
buoyancy.”

2.6 Application to the Lithosphere

We have shown that the stability parameter, Ra,, scales the vertical variations of
density and viscosity with depth. We now estimate this parameter for the litho-
sphere to determine the conditions under which it might become unstable and how
long a convective instability might take to remove the bottom portion of the litho-
sphere. To do this, we estimate the parameters relevant to the lithosphere. We use
pm = 3300 kgm™, ¢ = 98ms% o =3x10° K™ and k = 107 m? s~ If
the mantle lithosphere varies in temperature between T = 800 K at the Moho and
T,, = 1600 K at its base, the temperature variation across the potentially unstable
mantle lithosphere is Ty = T, — T, = 800 K.

To estimate the “available buoyancy,” F,,, we assume a temperature profile for

the lithosphere and apply laboratory measurements of the temperature dependence
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of viscosity. The parameter B varies with temperature as:

-1
(g1 (AN H
B(T)=3"2n (—) ex (—) 2.45
(1) p (o (2.45)
where R = 8.3 J K™ mol™" is the universal gas constant, H is the activation enthalpy,
and A is the experimental constant inferred from laboratory measurements that relate
strain rates to a power of stress [Molnar, Houseman, and Conrad, 1998]. This relation

can be made dimensionless using (2.20):

(2.46)

B'(T") = exp ( HTo(1 — 1) )

nRT, (T, + ToT")

For both linear and error-function geotherms, we use (2.22), (2.45), and (2.46) to cal-
culate B, and F,, for values of H, A, and n given by Karato, Paterson, and FitzGerald
[1986] and relevant to diffusion (n = 1) and dislocation (n > 1) creep mechanisms
for “wet” and “dry” conditions (Table 2.1). The dislocation creep mechanism is ap-
plicable if stresses are greater than about 0.1 to 1 MPa, which is likely the case for
convective instability. Hirth and Kohlstedt [1996] propose that the “wet” rheology
is applicable below 60 to 70 km depth. For dislocation creep, the estimates of H
in Table 2.1 differ from those of Hirth and Kohlstedt [1996] by less than 20%, but
estimates of A for dry olivine are smaller by a factor of 5, and those for wet olivine
can not be easily compared because Hirth and Kohlstedt [1996] give a stress exponent
of 3.5. For diffusion creep, estimates of A depend significantly on grain size, which is
not well known for the mantle. Because of uncertainties in A and n, we expect our
calculations of B,, to also include significant uncertainty, making our ignorance of
the presence of wet or dry conditions at the base of the lithosphere somewhat unim-
portant for this study. Our estimates of F},, however, do not depend on A, and thus
should be more reliable. The most uncertain parameters are then the thickness, h,
of the mantle lithosphere, and the material strength at its base, B,,; we leave these
parameters to be determined in the following analysis.

To estimate stability and growth rates for diffusion creep, we first calculate Ray
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Table 2.1. Estimates of B,, and F}, for various creep regimes and temperature profiles.

Creep Regime nt HT At B, F, F,
(kJ/mol) (s™'Pa™") (Pa sl/") (Error Function)  (Linear)

Wet Diffusion 1 250 1.5 x 10743 6.7 x 10? 3.1 x 1072 8.5 x 1073
Dry Diffusion 1 290 7.7 x 10719 2.6 x 108 2.6 x 1072 6.6 x 1077
Wet Dislocation 3 420 1.9 x 107% 1.9 x 10° 1.3 x 107 5.5 x 107°
Dry Dislocation 3.5 540 2.4 %1071 1.9 x 10° 2.3 x107° 8.8 x10°°¢

"From Karato, Paterson, and FitzGerald [1986].

4 .
*Assumes a 10 mm grain size.

using (2.37) as a function of n,, using the parameters values listed above and for
values of h equal to 25, 50, 100, and 200 km. We do this for F; = 3.1 x 1072 and
F1 = 6.6 x107? to span the full range of “available buoyancy” given for diffusion creep
in Table 2.1. Using the values of ¢'( Ray) given in Figure 2.9 for r = 100, we use (2.25)
to calculate the exponential growth rate, ¢, as a function of 7,,. Exponential growth
exhibits a doubling of the amplitude of an instability in a time given by In(2)/¢, which
we plot as a function of 7, in Figure 2.18. Because the growth rate scales inversely
with viscosity, the doubling time scales with 7,,, if 1,, is small enough to yield a large
value of Ray (Figure 2.18). If n,, is sufficiently large that Ra; < 50 (Figure 2.9),
however, exponential growth stops, and the doubling time becomes infinite. This
critical viscosity varies with the lithosphere thickness, h (equation (2.37)). As a
result, a thin unstable layer requires lower viscosity at its base to become convectively
unstable than does a thicker layer (Figure 2.18).

Depending on the initial amplitude of a perturbation, several doubling times will
be required for that perturbation to grow large enough to remove the bottom portion
of the lithosphere. Thus, if convective instability requires five doubling times within,

say, 10 million years, the (Newtonian) viscosity at the base of the lithosphere must be
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Figure 2.18: Plot of the time for an instability to double in amplitude, given by
In(2)/q, as a function of the viscosity at the bottom of the layer, 1,,, for exponential
growth with Newtonian viscosity. The doubling time, given in millions of years, is
calculated as described in the text for four layer thicknesses and the two most extreme
values of I} given in Table 2.1 for diffusion creep, and other parameter values given
in the text. The dot represents a solution showing that if 1,, = 3 x 10'® Pa s and
h = 100 km, an instability will double in size approximately every 2 million years.
Such an instability will be removed in 10 million years if five doubling times are
required for this to occur.

less than about 310 Pa s for a 100 km thick mantle lithosphere and F; = 3.1 x 1072
(dot on Figure 2.18). Thinner lithosphere or decreased “available buoyancy” requires
smaller viscosities. Viscosity as low as n,, = B,,/2 = 1.3 x 10'® Pa s is suggested
by laboratory studies (Table 2.1) for diffusion creep, which would allow mantle litho-
sphere thicker than about 50 km to rapidly become unstable. Hager [1991] used
several geophysical observables to estimate that asthenospheric viscosities could be
as low as 10' Pa s but other authors suggest values closer to 10*° Pa s [e.g., Mitro-
vica and Forte, 1997]. This latter value permits only very thick (200 km) lithosphere
to become unstable in 10 million years for the lower bound of “available buoyancy”

(Figure 2.18, dashed lines) but still allows instability in 50 km thick lithosphere for
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the upper bound of F; (Figure 2.18, solid lines). Thus, if viscosity is Newtonian,
convective removal of the lithosphere’s base in a few million years is perhaps not
unrealistic, but probably only where mantle lithosphere is more than 100 km thick.
To consider non-Newtonian viscosity applicable for dislocation creep, we calcu-
lated Ra, as a function of B,, for dislocation creep under both wet (n = 3) and dry
(n = 3.5) conditions. We again use the lithospheric parameters given above and new
estimates of F), (Table 2.1), and we consider perturbations with amplitudes only 10%
of the thickness of the entire layer, Zg = 0.1h. We use the r = 100, Z; = 9.54% curve
in Figure 2.16 to obtain C” as a function of B,,, from which we calculate the dimen-
sionless time to removal, ¢} using (2.32). We make this quantity dimensional using
(2.29), and give its functional dependence on B,, in Figure 2.19 for both wet and dry
olivine, four thicknesses, and the range of F), given in Table 2.1. In applying the curve
for C'(Ras), which we calculated using n = 3, to dry conditions for which n = 3.5,
we have assumed that the curve of C'(Ra,) is approximately the same for both n =3
and n = 3.5. This assumption is perhaps not inappropriate because Houseman and
Molnar [1997] find only a weak dependence of C” on n for n = 2, 3, and 5.
Extrapolations of laboratory measurements to conditions at the base of the litho-
sphere yield B,, on the order of 10° Pa s!/” for both n = 3 and n = 3.5 (Table 2.1).
This value of B,, implies convective removal of the lower lithosphere in less than 1
million years for lithospheric thicknesses greater than about 25 km for wet conditions
(Figure 2.19a), but 100 km for dry conditions (Figure 2.19b). These thicknesses, of
course, depend on the actual value of B,,. Similarly, the “available buoyancy,” F},,
(Table 2.1) affects the “critical” thickness for convective instability. Decreasing F),
by a factor of two corresponds to increasing B,, by a factor of only 2'/* as shown
by (2.29), making variations in F}, less important for n = 3 or 3.5 than for n = 1.
For n > 1, the time to removal also depends on the initial perturbation amplitude,
Zo, to the (1 — n) power, as in (2.32). As supposed by Houseman and Molnar [1997]
and Molnar, Houseman, and Conrad [1998], perturbations with amplitudes half the
lithospheric thickness may be possible for recently thickened lithosphere, which are
five times the amplitude of those considered here. Multiplying Zy by a factor of 5
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Figure 2.19: Plot of ¢;, the time for an instability to become completely detached from
an unstable layer, as a function of the rheological parameter at the bottom of the layer,
B,,, for a non-Newtonian viscosity characterized by dislocation creep. The removal
time, given in millions of years, is calculated as described in the text for both (a) wet
conditions, for which n = 3, and (b) dry conditions, for which n = 3.5. Calculations
are given for four layer thicknesses, the two values of F), given in Table 2.1, and the

other parameter values given in the text.
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has the same effect as decreasing B, by a factor of 5'='/" as shown by (2.32) if it is
redimensionalized by (2.29). This shifts the curves in Figure 2.19 to the right by a
factor of about 3, which expands the range of B,, that produces rapid instability for
a given lithosphere thickness.

Some portions of the continental lithosphere have remained stable for long periods
of the Farth’s history. Many cratonic shields have undergone little or no deformation
for more than a billion years [e.g., Hoffman, 1990]. Thus, continental lithosphere
is generally stable; some additional mechanism is required for it to become unsta-
ble. One such mechanism could be mechanical thickening. If the mantle lithosphere
is thickened along with the crust during an episode of horizontal shortening, the
vertical length scales associated with a convective instability increase. Because the
sublithospheric viscosity is not affected by such thickening, an increase in h has the
effect of decreasing the time for an instability to occur (Figures 2.18 and 2.19). For
certain values of h and 0, or B,,, increasing h by a factor of two can cause an oth-
erwise stable lithosphere to become convectively unstable on short time scales. For
example, if B,, = 10'° Pa s'/® for dislocation creep of wet olivine, 50 km thick mantle
lithosphere is convectively stable, but its lower part will be removed in 2 million years
if it thickens by a factor of two (Figure 2.19a).

If viscosity is non-Newtonian, increasing the amplitude of a perturbation has the
same affect as increasing the layer thickness, h, as discussed above. Thus, convective
instability can be generated from a stable mantle lithosphere if large perturbations can
be generated at its base. Horizontal shortening could help generate large amplitude
perturbations through folding instability or localized thickening. Because horizontal
shortening has already been associated with the initiation of convective instability
through an increase in lithosphere thickness, as described above, or through a decrease
in strength due to strain-rate weakening [Molnar, Houseman, and Conrad, 1998], it
seems likely that horizontal shortening could initiate a convective instability at the
bottom of the lithosphere.

Convective instability should continue to erode thickened mantle lithosphere until

it is thin enough to be stable on long time scales. The bottom, weakest part will be
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Figure 2.20: Plot of ¢, the time for an instability to become completely detached from
an unstable layer, as a function of the thickness the layer, h. The removal time, given
in millions of years, is calculated as described in the text assuming wet conditions
(n =3), B, = 10'° Pa s'/2. I3 = 1.3 x 107*, and an initial perturbation amplitude,
7o, of either 10% or 50% of h. Other parameter values are given in the text.

removed quickly, but removal of the colder interior of the mantle lithosphere requires
increasingly greater time [Molnar, Houseman, and Conrad, 1998]. To determine the
thickness of a layer that will remain stable for a given amount of time, we plot the
removal time, ¢, as a function of the layer thickness, i (Figure 2.20). We calculated
tp using (2.32) and the dependence of C" on Ras (Figure 2.16), and assume wet
conditions (n = 3), B, = 10'° Pa s¥3 Fy = 1.3 x 107, and the parameter values
given above. If perturbation amplitudes are 10% of the mantle lithosphere thickness,
a layer 65 km thick will be stable for a billion years. If this layer is mechanically
thickened to 130 km, the first instability to grow should do so in about 1 million years
(Figure 2.20), and should remove the basal part, about 16 km using the estimates
of Molnar, Houseman, and Conrad, [1998]. With negligible diffusion of heat in this
interval, perturbations at the base of the remaining 114 km thick layer should be
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unstable and grow, but more slowly. This process should continue, with removal of
basal layers at successively lower rates until a stable layer is achieved. If perturbation
amplitudes remained only 10% of the layer thickness, the layer would eventually
return to its original thickness, 65 km, but this will take a billion years (Figure 2.20).
A thickness of 80 km, however, will be reached in only 10 million years. It is possible
to make similar estimates for a variety of values of B,, by estimating the thickness of
a layer that is stable on time scales of 10 million years from Figures 2.18 and 2.19 for
a given value of B,,. This thickness is generally a factor of 1.2 to 1.5 times that of a
layer that remains stable for a billion years (Figures 2.18 and 2.19). Thus, lithosphere
that is at its stability limit and then thickened by a factor of two, should, in 10 million
years, erode back to a thickness 20 to 50% larger than its original thickness. The lower
end of this range applies to thinner layers (25 to 50 km) and the higher end to thicker
layers (100 to 200 km).

This estimate is complicated by the dependence of both Ra, and ¢, the pertur-
bation amplitude, which we expect to increase as a layer thickens. If, for instance,
as h increased from 65 km to 130 km, perturbations grew from 10% to 50% of &, the
thickness of the layer after 10 million years of convective removal will be about 40
km (Figure 2.20), only 60% of the original 65 km thickness. Thus, it is possible that
mechanical thickening could lead to a net thinning of the mantle lithosphere because
convective instability can remove more lithosphere than is accumulated by a thick-
ening event. For this to occur, viscosity must be non-Newtonian and the mechanical
thickening must generate a significant increase in perturbation amplitude.

We might also expect the temperature profile of a thickened layer to change as its
bottom part is convectively removed. The base of the lithosphere should be removed
soon after, or during, a thickening event, and should carry with it a significant frac-
tion of the layer’s “available buoyancy,” leaving that layer overly cold, and therefore
strong. Thus, we expect a decrease in F}, with each successive removal, slowing further
unstable growth. This decrease in F), is opposed by the diffusion of heat. Thermal
diffusion associated with the juxtaposition of cold lithosphere and hot asthenosphere

after a convective removal event should help replenish the “available buoyancy” by
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increasing the amount of warm material. If thermal diffusion and the increase in per-
turbation size caused by thickening approximately balance the decrease in “available
buoyancy” as successive instabilities occur, then the above estimates of the degree
of convective thinning following mechanical thickening should apply. If a decrease in
“available buoyancy” overwhelms the perturbation size increase, it will be difficult for
the instability to grow sufficiently to remove a significant fraction of the lithosphere.
On the other hand, if the increase in perturbation size is more important than the de-
crease in “available buoyancy,” thickened lithosphere could erode mantle lithosphere

and eventually make it thinner than its original thickness.

2.7 Conclusions

The “available buoyancy” provides a simple scaling that approximates the rate at
which a density instability may grow from a cold, dense fluid layer. Although the
growth rates for several thermal structures have already been determined [e.g., Conrad
and Molnar, 1997; Houseman and Molnar, 1997; Molnar, Houseman, and Conrad,
1998], they are necessarily complicated by the details of the temperature dependence
of viscosity, non-Newtonian viscosity, and the functional dependence of temperature
on depth within the layer. The advantage of the “available buoyancy” scaling is
that it enables all of these “complications” to be included in a single scaling, so
that an approximate determination of the growth rate can easily be calculated for
a given temperature and viscosity structure. By comparing this growth rate to the
slowing effects of thermal diffusion, we can assess whether a given thermal structure
is convectively unstable.

Thus far, we have examined only unstable density structures that are generated
by the thermal contraction of fluids at cold temperatures. For the deep mantle litho-
sphere beneath continents, an unstable density structure created by temperature may
be stabilized by the addition of basalt-depleted, low-density peridotites [Jordan, 1978;
Jordan, 1981; Jordan, 1988]. This structure, proposed to account for the observed

stability of deep continental roots over billions of years, has been termed by Jordan
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[1978] the “continental tectosphere.” Although our definition of the “available buoy-
ancy” does not take chemical density differences into account, this should be relatively
easy to do. Qualitatively, the addition of low-density material to a thermal structure
should decrease the total “available buoyancy,” and thus slow growth. Care must be
used, however, when determining the convective stability of density structures that are
partially generated by chemical differences because only temperature-induced density
variations are subject to smoothing by thermal diffusion. In the tectosphere, however,
the compositional variations in density are not themselves unstable, so the stability
analysis derived here should apply, if the appropriate “available buoyancy” can be
estimated.

Because continental lithosphere is thought be stable, at least on time scales of bil-
lions of years, some disrupting event must occur for it to begin to become unstable.
We have shown that the lithosphere can move from a condition of convective stabil-
ity to one of instability through the mechanical thickening of its mantle component.
Because the degree of instability is proportional to the cube of the mantle litho-
sphere’s thickness, significant thickening can lead to instability, both by increasing
the amount of negatively buoyant material in a given vertical column, and by decreas-
ing the effects of thermal diffusion. In addition, if lithospheric material behaves as
a non-Newtonian fluid, large-amplitude perturbations generated in conjunction with
a thickening process, and weakening due to horizontal straining, can generate even
more rapid convective removal after a thickening event. We estimate that 10 million
years after mechanical thickening, it is possible that convective erosion could result in
a mantle lithosphere that is only 60% as thick as it was before the thickening event.
A smaller fraction of lithosphere is removed if the amplitude of perturbations does
not increase significantly as the layer thickens.

Such convective removal should result in surface uplift of a few kilometers [e.g.,
Bird, 1979; FEngland and Houseman, 1989; Molnar, England, and Martinod, 1993],
followed by eventual extension, as is observed in several mountain ranges [Houseman
and Molnar, 1997]. The replacement of cold mantle lithosphere by hot asthenosphere

should also cause melting of portions of the remaining mantle lithosphere, causing
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volcanism and possibly regional metamorphism. Trace element isotopic analysis of
volcanism in previously thickened areas suggests that this volcanism is produced by
the melting of continental lithosphere, not asthenosphere [e.g., Fitton, James, and
Leeman, 1991; Turner et al., 1996]. This evidence is not consistent with some models
that produce rapid surface uplift such as complete delamination of mantle lithosphere
or mechanical thickening that does not yield instability. It is, however, consistent with
significant, but not complete, removal of the mantle lithosphere by convective erosion,
a processes that we have shown to be associated with previous mechanical thickening

of the mantle lithosphere.
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