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SUMMARY
Localized mechanical thickening of cold, dense lithosphere should enhance its gravi-
tational instability. Numerical experiments carried out with a layer in which viscosity
decreases exponentially with depth, overlying either an inviscid or a viscous half-space,
reveal exponential growth, as predicted by linear theory. As shown earlier for a layer
with non-linear viscosity and with a constant rheological parameter (Houseman &
Molnar 1997), a perturbation to the thickness of the layer grows super-exponentially;
for exponential variation of the rheological parameter, the time dependence of growth
obeys an equation of the form

AZ

L B(1−n)= (n−1)ACbgL 2

nB
0
Bn (tb−t) ,

where Z is the magnitude of the perturbation to the thickness of the layer; L is the
characteristic e-folding distance through the layer for the rheological parameter B,
which is proportional to viscosity and reaches a minimum of B0 at the base of the
layer; n is the power relating stress to strain rate; C (~0.4, for the experiments
considered here) is an empirical constant that depends on wavelength; b is the vertical
gradient in density (assumed to decrease linearly with depth in the layer); g is the
gravitational acceleration; t is the time; and tb is the time at which a blob of material
drawn from the basal part of the layer drops away from the layer. A simple application
of this scaling relationship to the Earth, ignoring the retarding effect of diffusion of
heat, suggests that somewhat more than half of the lithosphere should be removed in
a period of ~20 Myr after the thickness of the layer has doubled. The imposition of
horizontal shortening of the layer accelerates this process. In the presence of a constant
background strain rate, growth will initially be exponential as the non-Newtonian
viscosity is governed by the background strain rate. Only after the perturbation has
grown to several tens of per cent of the thickness of the layer does growth become
super-exponential and yet more rapid. An application of this scaling and its calibration
by numerical experiments presented here suggests that super-exponential growth is
likely to begin when the perturbation approaches ~100 per cent of the thickness of
the layer, or roughly 100 km, when applied to the lithosphere. Thus, where the crust
has doubled in thickness in a period of 10–30 Myr, we anticipate that roughly half, or
more, of the thickened mantle lithosphere will be removed in a period of 10–20 Myr
following the initiation of shortening.
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Instability and convective thinning 569

can be extended to an exponentially varying rheological
1 INTRODUCTION

coefficient.
Although some form of convective exchange of mass andIf, when continental crust thickens during mountain building,

the entire lithosphere thickens, then the thickened mantle part heat at the base of the lithosphere must occur to supply the

heat flux through the plate, few observations constrain theof the lithosphere may become gravitationally unstable. Growth
of such an instability and the associated removal of part of amount of lithosphere likely to be removed by such a process.

In regions where thickening of the lithosphere has precededthe mantle lithosphere, which sinks into the asthenosphere,

should then perturb the thermal structure of the remaining, volcanism, such as Tibet or the Basin and Range Province of
the western United States, the volcanic rock carries isotopicoverlying lithosphere (Fig. 1). Regional metamorphism, uplift

of the overlying surface and changes in the tectonic style of and rare-earth signatures that suggest melting of continental

lithosphere, not asthenosphere (e.g. Fitton et al. 1988; Turnerboth the uplifted and the surrounding terrains are potential
consequences of such an instability (e.g. England & Houseman et al. 1996). These results imply that neither the entire litho-

sphere nor only a small fraction of it has been removed. Thus,1989; Houseman, McKenzie & Molnar 1981; Molnar, England

& Martinod 1993; Platt & England 1994). Yet, several aspects a second motivation of this paper is to use the scaling laws
developed earlier and extended here to estimate the fractionof the continental lithosphere might inhibit such an instability,

such as the strong temperature dependence of viscosity in of lithosphere that is likely to be involved in this kind of

convective thinning event.the mantle (e.g. Buck & Toksöz 1983; Lenardic & Kaula
1995; Moresi & Lenardic 1997), the non-linear dependence We build on results obtained from linear analysis of the

Rayleigh–Taylor instability (Conrad & Molnar 1997) and onof viscosity on strain rate (Houseman & Molnar 1997) or

chemical stratification of the continental lithosphere (e.g. Jordan simple scaling laws and numerical experiments on finite-
amplitude instabilities with both linear (Newtonian) and1975). To understand how non-linear viscosity might affect

such an instability, we have examined its effect on the Rayleigh– non-linear viscosity (Houseman & Molnar 1997). For a small

perturbation to the base of a dense, constant-viscosity layerTaylor instability, the instability associated solely with a dense
layer overlying a denser substrate (Conrad & Molnar 1997; over a less dense substrate, the amplitude of the perturbation

grows exponentially with time, with a growth rate q (theHouseman & Molnar 1997). The present paper is a continu-
ation of these studies. inverse of the time constant) given by

We focus on two aspects of this instability not considered

by Houseman & Molnar (1997). First, we consider the effect q=ADrgh

2g B q∞(kh, r) (1)
of an exponentially decreasing viscosity coefficient through the
layer. Our goal was to evaluate the effect of a decrease in (e.g. Chandrasekhar 1961), where the symbols are defined in
viscosity coefficient through the layer on the growth rate and Table 1. The function q∞(kh, r) describes the dependence of the
on the amount of the layer removed by the instability. Second, growth rate on the wavenumber k and the ratio r of the
we consider the growth of Rayleigh–Taylor instability in a layer viscosity of the layer to that of the underlying half-space. For
with non-linear viscosity undergoing horizontal shortening. a medium in which the viscosity depends on the strain rate
Our objective with these experiments was to understand how the viscosity changes continuously as the perturbation grows,
such horizontal shortening might alter the temporal develop- and strain rates respond to the changing viscosity. Where
ment of the instability and accelerate it. One of our main strain rate varies as a power of deviatoric stress, ė~tn, as has
motivations is to demonstrate that the scaling relationships been observed for most rock-forming minerals, we can express
presented by Houseman & Molnar (1997) for non-linear viscosity the relationship between strain rate and deviatoric stress by

t
ij
=BĖ(1/n−1) ė

ij
. (2)

Ė2=(1/2)S
i,j

ė
ij

ė
ij

is the second invariant of the strain-rate
tensor for an incompressible fluid*. Thus, the viscosity can be
written as

g=
B

2
Ė(1/n−1) . (3)

For the case in which B is constant in the layer, Houseman
& Molnar (1997) assumed that the strain rate scales with the
ratio of the maximum downward speed (w) of the layer to its

thickness (h). This then yielded a simple expression for the
growth of the instability:

w=CCAn−1

n B Drg

B
h1/n (tb−t)Dn/(1−n) , (4)

where C is a dimensionless constant that depends on the
Figure 1. Sequence of four idealized cross-sections showing (a) thick- wavenumber, the density structure and n; and tb defines the
ening of both crust and mantle lithosphere, (b) convective instability

of the thickened mantle lithosphere and descent of a blob of the

lower lithosphere, (c) the resulting thinner mantle lithosphere beneath *Values of B are defined relative to this definition of the second

invariant, which agrees with that of Conrad & Molnar (1997) and is(at least parts of ) the mountain belt and (d) crustal extension and

thinning by divergence of the surrounding lithosphere. half that of Houseman & Molnar (1997).
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570 P. Molnar, G. A. Houseman and C. P. Conrad

Table 1. Definition of symbols. & Molnar 1997):

A Pre-exponential coefficient in relationship between stress and
tb=A nB

CgDrhBn (Z
0
/h)1−n

(n−1)
. (6)

strain rate

B Viscosity coefficient (where constant in the layer)
The understanding embodied in eqs (1)–(6) provides the basisB0 Viscosity coefficient at the base of the layer, through which
for the experiments carried out here.it decreases with depth

C Dimensionless constant that scales growth rates of fluids

with non-linear viscosity. Subscripts on C based on timescales
2 BASIC EQUATIONS ANDT defined in Table 2. Interrelationships of differently defined
NON-DIMENSIONALIZATIONvalues of C in Table 3.

Ė2 Second invariant of the strain rate tensor
The basic equation to be solved is Stokes’s equation, which

H Activation enthalpy in relationship between stress and strain
expresses a balance between gradients in stress and body

rate
forces, when inertial terms can be neglected:L Characteristic e-folding depth scale for exponential decrease

in viscosity coefficient ∂s
ij

∂x
j
−rgd

iz
=0 , (7)R Universal gas constant

Z Maximum perturbation to the base of the layer

Z0 Maximum initial perturbation to the base of the layer where s
ij

is the stress component and d
ij

is the Kronecker
g Gravitational acceleration delta. The stress components are separated into isotropic ( p)
h Thickness of layer

and deviatoric (t
ij
) parts:

k Wavenumber of perturbation to the base of the layer

n Power relating stress to strain rate s
ij
=pd

ij
+t

ij
, (8)

p Pressure
where eqs (2) and (3) relate t

ij
to the strain rate. We assumeq Growth rate of Rayleigh–Taylor instability for Newtonian

that the flow field induced in the layer is incompressible:viscosity. Subscripts on q defined in Table 2.

r Ratio of the viscosity of the layer to that of the underlying

half-space ė
ii
=

∂u
i

∂x
i
=0 . (9)

t Time

tb Time at which the maximum downward speed becomes
Although we neglect accelerations in the balance of forces,

infinite, and a blob of the basal part of the unstable layer
time dependence appears because gravity acts on any small

drops away from the remaining part
perturbation to the flat base of the heavier, overlying layeru0 Relative convergence rate between the two side boundaries
and induces a flow field, which, in turn, amplifies the pertur-w Upward component of velocity of material in or on the
bation at a rate whose magnitude depends on the size of theboundary of the layer, but used mostly to mean the maximum
perturbation. Growth manifests itself most clearly by the timenegative (downward) speed.

x Horizontal coordinate evolution of the position of the base of the layer.
z Vertical coordinate The layer is bounded by its basal free surface S(x, z), initially
a Coefficient of thermal expansion at z=0, and its upper rigid surface at z=h. Gravity acts in
b Vertical gradient in density the negative z direction and the rheological parameter that
l Wavelength of the initial perturbation to the base of the layer

governs viscosity, B, decreases exponentially with depth, with
h Temperature

a scaling length L , through a layer of thickness h (Fig. 2):
q2 Second invariant of the stress tensor

Dr Density difference between the layer and the underlying B(z)=B
0
exp(z/L ) , 0≤z≤h . (10)

half-space

g Newtonian viscosity of the layer (=B/2 when n=1)

s
ij

Stress component

t
ij

Deviatoric stress component

time when the speed of the materials drawn into the down-
welling limb accelerates to infinity, as a blob drops off the

bottom of the layer. Integrating eq. (4) yields a time dependence
for the maximum displacement of the base of the layer, Z:

AZ

hB(1−n)= (n−1)ACDrgh

nB Bn (tb−t) . (5)

Numerical experiments on a layer overlying an inviscid half-
space allowed us to confirm these relationships and to deter-

Figure 2. Simple cross-sections of density (left) and ln B (right) formine the dimensionless constant C and the time tb as functions
the experiments. We use two density structures within a layer of

of the wavenumber of the perturbation and of n. Canright &
thickness h, the density in one case being constant within the layer,

Morris (1993) derived a similar time dependence for a layer
and in the other case linearly decreasing, both overlying a layer of

of constant density and B with stress-free top and bottom constant density. For rheological structures, in most cases, the
boundaries. Moreover, the instability time tb can be shown to rheological parameter B decreases with depth exponentially, and in
depend on the growth factor C, and on the maximum deflection most cases the underlying structure is inviscid. For cases with a viscous

substrate, the viscosity is equal to that at the base of the layer.of the base of the unstable layer at time zero, Z0 (Houseman
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Instability and convective thinning 571

Because we ignore inertial terms, magnitudes of density are and the subscript L b distinguishes this scaling from those

where different length and density scales are used. In particular,unimportant; only variations in density matter. We consider
two possible density distributions: constant density, we use h in place of L if L �2, and if b=0 (constant-density

layer) we use Dr in place of bL . For Newtonian viscosity
Dr=rtop−rbottom=constant , 0≤z≤h , (11)

(n=1), B0=2g0 . The range of experiments studied here
and linearly decreasing density, requires that we use a number of distinct dimensionalization

schemes, as listed in Table 2.r(z)= (rtop−rbottom )z/h=bz , 0≤z≤h , (12)

with r(z)=rbottom for z≤0 for both. In either case, the density
3 RESULTS WITH EXPONENTIALLYis relative to an assumed constant-density lower layer. Both
DECREASING NEWTONIAN VISCOSITYthe density and the viscosity coefficient are considered to be

material properties of the fluid and are advected with the flow. For Newtonian viscosity, we may calculate theoretical growth
We carried out a series of numerical experiments using the rates during the initial growth, when non-linear terms in the

same finite element code as Houseman & Molnar (1997). For basic equations are small. Following Conrad & Molnar (1997),
most cases, meshes were constructed with ~5000 nodes form- we use propagator matrix methods developed by Bassi &
ing a mesh of approximately equilateral triangles. Quadratic Bonnin (1988) to determine growth rates linearized about a
interpolation was used for the velocity field and linear inter- basic background state of pure shear. This analysis is also
polation for pressure. Time stepping was done by a second- applicable for Newtonian rheology and zero background strain
order Runge–Kutta integration in which node points were rates (Conrad & Molnar 1997). These linearized growth rates
advected by the flow field in order to compute the motion of are compared with those determined from the 2-D non-linear
the free surface at the base of the layer. calculations to verify the accuracy of the two computational

We examined the dependence of growth rates on the wave- methods and to extend the range of wavenumbers studied
number of a sinusoidal perturbation of fixed wavelength l experimentally.
(=2p/k) by setting the width of the layer equal to l/2, and by
perturbing the lower surface of the layer at t=0 by

3.1 Constant density in a layer overlying an inviscid
S(x, z)={x, −Z

0
cos (2px/l)} . (13) half-space

We experimented with the amplitude of the perturbation and
We carried out experiments with viscosity varying across the

commonly used Z0=0.01h, 0.001h or 0.0001h.
layer by 3, 10, 30 and 100 times, corresponding to L =0.9102h,

For boundary conditions we permitted no movement at the
0.4343h, 0.2940h and 0.2171h respectively in eq. (10). Lengths

top of the layer, z=h, and allowed the two sides, at x=0 and
are rendered dimensionless using L , and times using T

LDr
=

x=l/2, to slide vertically, but not horizontally. For shear
2g0/(DrgL ) (Table 2). Because we expect that perturbations

stress on those sides we set t
xz
=0. We generally assumed a

initially will grow exponentially, we plot logarithms of the
lower layer of constant density (zero in the reference frame

downward speed w∞ and of Z∞, the vertical coordinate of the
used for density) whose viscosity was small compared to the

bottom left corner of the mesh, against dimensionless time. In
upper layer. Under these conditions, the tractions on the lower

general, this corner of the layer, where the perturbation is
boundary of the layer are zero throughout the growth of the

maximum, moves most rapidly and farthest as the perturbation
instability (s

xz
=0 and s

zz
=0) regardless of the shape of the

grows. For both w∞ and Z∞, we fitted straight lines of the form
boundary. For some experiments we included a lower layer of

ln w∞= ln w∞
0
+q∞estt∞ (17)constant properties in which the flow was explicitly calculated,

assuming that displacements and tractions were continuous
to the initial straight-line segments of the data, and we

across the boundary.
estimated q∞est for each* (Fig. 3). The growth rates determined

Although two scaling dimensions, L and h, are generally
from these experiments (shown as solid lines, the best fit to

present, linear analysis indicates, at least for media with
the early part of the curves, in Fig. 3) agree within a few per

Newtonian viscosity, that for a viscosity variation across the
cent with those predicted by the linearized theory (Fig. 4). In

layer of order 10 or more, the more important dimension is
general, growth rates determined from Z∞ fit the linearized

that governing viscosity (Conrad & Molnar 1997). Thus we
theory better than those based on w∞. When some of these

define the dimensionless length parameters
calculations were repeated with a denser mesh we found

(x∞, y∞)= (x, y)/L (14) agreement of measured growth rates to four figures, suggesting
that the disagreement between the two calculation methods is

except where B is constant throughout the layer (L �2 ). For
probably explained mainly by the discretization error in the

this case
finite-element method.

(x∞, y∞)= (x, y)/h . (15) Plots of dimensionless growth rates as a function of

dimensionless wavenumber k∞ yield curves (Fig. 4) with maximaThe choice of scale for the dimensionalization of time follows
that depend only on the length scale of viscosity variation,from the growth rate defined by eq. (1), but is modified by
L /h. Growth rates for variations in viscosity of 30 timesHouseman & Molnar (1997) for a non-Newtonian fluid and
(L /h=0.2940), 100 times (L /h=0.2171) and higher differgeneralized here for application to a layer with stratified
little. The maximum dimensionless growth rate in the limit ofdensity and viscosity by substitution of the length scale L .
small L is q∞

L
#0.28 for k∞#1 (l#2pL ). In the opposite limitThus t∞=t/T

Lb
, where

* Information regarding the location of experimental data is availableT
Lb
=A B

0
gbL 2Bn , (16)

from the Royal Astronomical Society (vjd@ras.org.uk).

© 1998 RAS, GJI 133, 568–584
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Table 2. Dimensionless growth rates or growth constants and their defining dimensionless timescales.

Dimensionless growth rate Scale for distance Scale for density Defining timescale Defining equation number

q∞
h
=qT

hDr
h Dr T

hDr
=

2g

Drgh
(1)

q∞
L
=qT

LDr
L Dr T

LDr
=

2g
0

DrgL

q∞
L
=qT

Lb
L bL T

Lb
=

2g
0

gbL 2
(16)

h bh (28)q◊
h
=qT

hs T
hs=A B

gbh2BA2u
0

l B(1−n)/n
L bLq◊

L
=qT

Ls T
Ls=A B

gbL 2BA2u
0

l B(1−n)/n
h DrC

hDr
T
hDr

=A B

gDrhBn
L DrC

LDr
T
LDr

=A B
0

gDrL Bn
h bh (16)C

hb
T
hb
=A B

gbh2Bn
L bLC

Lb
T
Lb
=A B

0
gbL 2Bn

Figure 4. Plot of measured (symbols) and theoretical ( lines) growth

rates q∞
L

versus wavenumber k∞, for a layer of constant density and

with viscosity decreasing exponentially with depth, overlying an

inviscid half-space. Values shown by open symbols are based onFigure 3. Examples of ln w∞ and ln Z∞ plotted versus t∞ for a layer
measurements of downward speeds of the bottom left corner of thewith constant density and with Newtonian viscosity, n=1 in eq. (3),
layer and values shown by solid symbols are based on displacementsdecreasing exponentially with depth in the layer, which, in turn,
of it. Note that as L /h decreases, the dependence of q∞

L
(k∞) on L /hoverlies an inviscid half-space. The linearity of the initial data defines

also decreases.the growth rate q∞
L
, which has been rendered dimensionless using

T
LDr

(Table 2).

Again, perturbations initially grow exponentially. Moreover,

measured growth rates, here rendered dimensionless usingof a constant-viscosity layer (L &h), Houseman & Molnar
(1997) obtained q∞

h
(=2gq/Drgh)� 0.32 at a wavenumber k∞ T

Lb
=2g0/(bgL 2 ) (Table 2), again differ from those predicted

by the linearized theory by less than a few per cent. As the(=2ph/l)#2.12.

ratio L /h becomes small and the variation in viscosity becomes
large, the dimensionless growth rate tends to a maximum

3.2 Density decreasing linearly with depth, inviscid
q∞max#0.210 at a wavenumber k∞max~0.8.

substrate
Growth for a linear density is slower than for a constant

density. Compared to a reference case of constant viscosity,Similar calculations for a density decreasing linearly with
depth through the layer yield similar patterns (Fig. 5). the dimensional growth rate for a constant-density layer is

© 1998 RAS, GJI 133, 568–584
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Figure 5. Plot of measured (symbols) and theoretical ( lines) growth

rates q∞
L

versus wavenumber k∞, for a layer with density decreasing

linearly and viscosity decreasing exponentially with depth, overlying

an inviscid half-space. As in Fig. 4, the values shown by open symbols

are based on measurements of downward speeds of the bottom left

corner of the layer and the values shown by solid symbols are based

on displacements of it. Again as in Fig. 4, for small values of L /h the

dependence of q∞
L
(k∞) on L /h decreases.

proportional to L /h, but the rate for a linearly decreasing
density scales as (L /h)2. For small L /h, the dimensional growth
rate for a linearly increasing density is smaller by a factor

of approximately 0.75(L /h) than that for constant density
(compare Figs 4 and 5). For large L /h (constant viscosity),
however, this ratio of growth rates approaches 0.38 (Houseman

& Molnar 1997). Recall that the total mass anomaly in the
linear-density layer is only half of that in the constant-density
layer, by eqs (11) and (12). More importantly, for constant

density, the most unstable part of the layer is near its base,
where the density contrast is high and the viscosity is lowest.
With linearly decreasing density, the density anomaly vanishes

at the base of the layer, and the unstable mass is centred Figure 6. Contours of density within the upper layer for two experi-

ments in which n=1, l/h=1.7, density decreases linearly with depth,higher in the layer, where the viscosity is higher than at the
viscosity decreases exponentially with depth and either the layerbase. Thus, a greater thickness of the layer should be involved
overlies an inviscid half-space (solid lines) or the layer overlies anotherin the instability when density decreases linearly (Houseman
layer of depth 4h, with density and viscosity equal to those at the base& Molnar 1997).
of the upper layer (dashed lines). Contours at increments of 0.1Dr are

shown and the lowermost contour is coincident with the base of the

upper layer (Dr=0). The instability clearly grows faster when the3.3 Density decreasing linearly with depth, viscous
lower layer is inviscid; this comparison shows two experiments whensubstrate
the lower left corner has sunk to z=−0.628h, at times of t∞=18.9

An advantage of a layer with exponentially decreasing viscosity and t∞=23.9 respectively.
overlying an inviscid half-space is that calculations can be
made quickly, without the need for calculating flow in the

underlying half-space. Although a layer over an inviscid half- of the base of the layer in contact with a viscous substrate
differs little from that over an inviscid fluid (Fig. 6).space at first appears to provide a poor model of the Earth,

studying such a structure is justified if the inclusion of an We calculated dimensionless growth rates as a function of
k∞ for a layer with density decreasing linearly with depth overunderlying viscous fluid has, at most, a small effect on growth

rates. As a test, we constructed a two-layered medium by a half-space (Fig. 7), using the linearized procedures described

by Conrad & Molnar (1997), and we then carried out theadding a thick lower layer whose (Newtonian) viscosity was
set equal to that at the base of the upper layer, i.e. B(z)=B0 full finite element calculations with the two-layered mesh for

wavenumbers close to k∞max . Again the experimental values offor z<0, and whose density was constant and equal to the

density at the base of the upper layer. We used lower layers q∞
L

agree within a few per cent with those calculated from the
linearized theory (Fig. 7). The functional dependences of q∞

L
(k∞)four times as thick as the upper layers, after finding that the

base of such a layer was deep enough that its behaviour for a layer over an inviscid half-space (Fig. 5) and over a

viscous half-space (Fig. 7) differ little, especially for smallapproximates that of a half-space. The density of finite-element
node points in the lower layer decreases with depth, but with ratios of L /h, corresponding to rapid decreases in viscosity

with depth in the layer. For viscosity variations of 100similar resolution near the interface of the layers. The shape

© 1998 RAS, GJI 133, 568–584
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means that the solution depends on the reference viscosity

about which the equations are linearized.

4.1 Constant density in a layer overlying an inviscid
half-space

As for Newtonian viscosity, we carried out experiments with
vertical variations in B of 3, 10, 30 and 100 times across the

layer. We tested the assumption that growth would follow
forms similar to those of eqs (4) and (5), derived by Houseman

& Molnar (1997). In our previous analysis of the layer with
constant B (Houseman & Molnar 1997), we showed a simple,
general form of the instability by making eqs (4), (5) and

(6) dimensionless using the length scale h, the thickness of
the layer. In what follows we show that, for B decreasing
exponentially, a similarly simple form results from making the

Figure 7. Plot of growth rates q∞
L

versus wavenumber k∞ from finite equations dimensionless using the length scale L . We then
element (symbols) and linearized ( lines) calculations for a layer with

compare the results of these two sets of experiments in order
density decreasing linearly and viscosity decreasing exponentially with

to describe the effect of decreasing L on the growth time of
depth, overlying a deep layer with constant density and viscosity equal

the instability.to those at the base of the top layer. Open and solid symbols as in
Non-dimensionalizing eqs (4) and (5), using Drh in place ofFig. 4. As in Fig. 4, for small values of L /h the dependence of q∞

L
(k∞)

bL 2 in eq. (16), yieldson L /h decreases.

w∞=CChDrAn−1

n B (t∞b−t∞)Dn/(1−n) , (18)
(L /h=0.2171), for instance, the value of q∞max for an unstable
layer falling into a viscous substrate is only ~15 per cent

Z∞(1−n)= (n−1)AC
hDr
n Bn (t∞b−t∞) . (19)smaller than that for an inviscid substrate.

Again, the subscript hDr indicates the length and density
3.4 Summary of results: exponentially decreasing

scales used in the non-dimensionalization. The dimensionless
Newtonian viscosity

parameter C
hDr

[=C, in eqs (4)–(6)] quantifies the rate at
which the instability grows. Houseman & Molnar (1997) testedThe results summarized in Figs 4, 5 and 7 show, first, that

calculations of finite-amplitude growth of the Rayleigh–Taylor eqs (18) and (19) by plotting Z∞1−n and w∞(1/n−1) versus t∞ and

estimated C
hDr

appropriate for the limit L /h�2.instabilities match the predictions of the linearized theory
for initial, small-amplitude growth. One may view this agree- Assuming that the basic physics that led to such relationships

applies also to the case of viscosity decreasing exponentiallyment as confirmation that the finite-amplitude program gives

accurate results. Second, both calculations show that as L /h with depth, we also plotted Z∞1−n and w∞1/n−1 versus t∞, but now
using the dimensionalization based on L (eq. 16) for L /h<1,decreases (and viscosity decreases rapidly through the layer),

both k∞max and qmax become independent of that ratio. Thus, and approaching L /h%1. Again the data define straight lines

(Fig. 8), which allow us to determine values of C
LDr

(k∞, n, L /h)results for moderate values of L /h ( less than about 0.3) may
be used for drawing inferences appropriate for small values of (Fig. 9). Because of the different dimensionalizations of C

LDr
and C

hDr
, however, as L /h� 0, C

hDr
becomes an inappropriatethat ratio. Perhaps most important, however, is the demon-

stration that exclusion of a viscous substrate does not affect measure of the growth rate, as does C
LDr

when L /h�2, as
shown by eq. (III.1) in Table 3.growth rates much. Thus, little understanding is gained by

making laborious, realistic calculations with a viscous As found for constant B, the values of C
LDr

inferred from

analyses of time series of w∞ and Z∞ differ by a few per cent.substrate.
We infer this to reflect a combination of experimental errors
as well as errors in eqs (18) and (19), since these equations,

4 RESULTS WITH EXPONENTIALLY
like eqs (4) and (5), are only approximations, not rigorously

DECREASING NON-LINEAR VISCOSITY
derived. Because we treat values of C, in general, as accurate

COEFFICIENT
to only one, or at most two, significant figures, these differences
do not concern us here. C

LDr
depends only weakly on LWe carried out a similar series of experiments for a layer whose

non-linear viscosity is given by eq. (3) with n=3, and a depth- for L /h<0.43 (Fig. 9). This dependence reveals that, for

exponential variations in B, k∞max is shifted towards largerdependent coefficient B defined by eq. (10), for (1) a layer with
constant density over an inviscid half-space, (2) a layer with values, or shorter wavelengths, than for Newtonian viscosity

(Fig. 4). Like q∞
L

for Newtonian viscosity, C
LDr

becomesdensity decreasing linearly through it over an inviscid half-

space and (3) a layer with density decreasing linearly through independent of L /h for small values of L /h; we observe a
weaker dependence on L /h for C

LDr
with n=3 than for q∞

L
it over a viscous half-space, with the rheological parameter
matching that at the base of the upper layer. Again the purpose with n=1. Because the effective viscosity, which depends on

strain rate, increases much more rapidly with height for n=3,was to quantify how an exponential variation in the rheological
parameter B affects growth. Linearized calculations cannot be even experiments with L /h=0.4343 are well into the asymptotic

domain in which the only important length scale is L .made for n=3, because the power-law growth of the instability
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Figure 9. Measured values of C
LDr

plotted against k∞ for a layer of

constant density and constant rheological exponent n=3 in eq. (3),

with the rheological parameter B decreasing exponentially with depth

in a layer overlying an inviscid half-space. Open and solid symbols as

in Fig. 4. As for the runs with Newtonian viscosity, the values of C
LDr

depend only weakly on the ratio L /h when it is sufficiently small.

The maximum values of C
LDr

(#0.76) as L /h� 0 differ only

slightly from those for constant viscosity, C
hDr

#1.1, corre-
sponding to L /h�2 (Houseman & Molnar 1997). Because

of the different dimensionalization schemes (Table 3, eq. III.1),
however, this similarity could be misleading. The simplest way
to describe the impact of the viscous strength coefficient

increasing upwards is to compare the dimensional instability
time (eq. 6) for experiments that differ only in the value of L ,
with each having the same viscosity coefficient at the base of

the layer (Table 3, eq. III.2). For example, the actual timescale
of the instability is increased by a factor of ~7 as L /h is
decreased from 2 to 0.4343 with n=3. For smaller values

of L /h the instability time increases in inverse proportion to
L /h.

Figure 8. Examples of (a) w∞1/n−1 and (b) Z∞1−n plotted versus t∞ for

three runs, all with n=3, l/h=1.4 and L /h=0.2940. In both (a) and 4.2 Density decreasing linearly with depth, inviscid
(b), the central time-series (+) shows results for a layer with density substrate
decreasing linearly with depth, overlying an inviscid half-space. The

We made similar calculations with the density decreasingupper time-series (×) shows results for a layer over a viscous half-

space. In these cases, times are non-dimensionalized by eq. (16). The linearly with depth in the layer, again overlying an inviscid
lower left time-series (#) shows results for a layer of constant density half-space. The density gradient b is defined by b=Dr/h. As
over an inviscid half-space, for which times are non-dimensionalized before, plots of Z∞1−n and w∞(1/n−1) versus t∞, with times non-
by eq. (16), but with bL =Dr. The lines fit to these data yield estimates dimensionalized by eq. (16), lengths by L and densities by bL ,
of the dimensionless parameter C via eqs (18) and (19). Notice that yield straight lines (Fig. 8) whose slopes determine the growth
growth is faster for a layer of constant density than for a layer with

coefficients C
Lb

(Fig. 10). Like C
LDr

(Fig. 9), C
Lb

depends only
density decreasing with depth, and faster for a layer over an inviscid

weakly on L for experiments with linearly decreasing density
half-space than over a viscous half-space.

(Fig. 10). The wavenumber dependence of C
Lb

shows maximum

Table 3. Relationships between dimensionless growth constants defined in Table 2 ( left-hand columns) and ratios of instability times (right-hand

columns) derived from those growth factors using eq. (16).

(III.1) (III.2)C
LDr

=Ah

L B1/nChDr
tb(Dr, L )

tb(Dr, L �2 )
=

h

L AC
hDr

(L �2 )

C
LDr

(L ) Bn
(III.3) (III.4)C

Lb
=

h

L
C
LDr

tb(b, L )

tb(Dr, L )
=AL

hB−nAC
LDr

(L )

C
Lb

(L ) Bn
(III.5) (III.6)C

hb
=AL

hB(n+1)/nCLb
tb(b, L )

tb(b, L �2)
=AL

hB−(n+1)AC
hb

(L �2 )

C
Lb

(L ) Bn
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space beneath the layer. We assigned values of the rheological

parameter B and the density r in the lower layer equal to the
corresponding values at the base of the upper layer and
assumed n=3 in both layers. Our purpose was merely to

examine how C
Lb

depended on the presence of the lower layer.
We calculated the growth of the instability for values of k∞
near k∞max (Figs 8 and 10). As for Newtonian viscosity, the

presence of the viscous substrate retards growth but not very
much. Values of C

Lb
with the viscous substrate are less than

those of the counterpart runs with an inviscid substrate by

between a few per cent and about 20 per cent, resulting in an
increase in the instability time of between 10 per cent and 100
per cent for n=3.

4.4 Thickness of layer removed by instability

Figure 10. Plot of measured values of C
Lb

versus k∞ for density Because the layer is heavier than the underlying half-space,
decreasing linearly, constant rheological exponent n=3 in eq. (3) and after an infinite amount of time almost the entire layer will be
viscosity decreasing exponentially with depth in layers either over-

removed. In the period that elapses during our experiments,
lying an inviscid half-space (regular symbols) or overlying a viscous

however, the basal portion of the layer thins, as it is drawn
half-space (circled symbols), with the rheological parameter in the half-

into the downwelling limb, and only the bottom of the layer,space equal to B0 . Open and solid symbols as in Fig. 4. Although the
where the rheological parameter B (or viscosity) is lowest, isvalues of C

Lb
for such a density structure differ from those for constant

removed. As time passes further, this basal portion will continuedensity (Fig. 9), the values again depend only weakly on the ratio L /h
to thin but at a rate that is reduced, because its averagewhen it is sufficiently small. Moreover, as for Newtonian viscosity

(Fig. 7), the effect of adding a viscous substrate is to retard growth of viscosity increases.
the instability, but values of C

Lb
differ from those for an inviscid From the experiments, we may estimate the amount of

substrate by only ~20 per cent. thinning after a period of approximately tb . If the growth of
the instability followed the theoretical relationship given by

values between 0.3 and 0.4, at wavenumbers k∞=L k of approxi- eq. (19), we could simply extrapolate the results and use the
mately 1.5. The ratio C

Lb
/C

LDr
is similar to the ratio C

hb
/C

hDr thickness of the layer at x=l/2 and t=tb to estimate the
for layers with constant B (Houseman & Molnar 1997). thickness Dh of material removed. Because of deviations of

The time for the instability to occur in a layer of linearly Z∞−2 from eq. (19) at times near t=tb , however, this does not
decreasing density is increased by the factor (L /h)−n(C

LDr
/C

Lb
)n yield a reliable estimate of the thickness of material removed.

relative to that for a constant-density layer with the same In some cases, Z∞−2 approaches zero at times slightly later
viscosity profile (Table 3, eq. III.4), a factor that is of order than t=tb , but for others, it does so for times slightly earlier
100 for n=3 and L /h=0.4343. By comparison, Houseman than t=tb (Fig. 8). Thus, we first extrapolated Z∞−2 for the
& Molnar (1997) found for a constant viscosity coefficient last two time steps to obtain an estimate of time at which
(L �2 ) that the instability time for a linearly decreasing Z∞−2=0. Then, we extrapolated the thickness of the thinned
density is a factor of about 16 times greater than that for side of the layer to that time to estimate Dh.
constant density*. Using Houseman & Molnar’s (1997) maxi- For layers over an inviscid half-space, values of Dh are
mum value of C

hb
(L �2 )#0.47, our value of C

Lb
(L )#0.35, commonly in the range 0.7–0.9L (Fig. 11a), but for layers over

n=3 and eq. (III.6) of Table 3, the instability time for a viscous half-space, Dh>L . The reason for this difference is
L /h=0.4343 is approximately 68 times greater than that for not obvious, but presumably circulation in the viscous sub-
the same experiment with L �2. As the maximum values of strate, generated by the high-density blob, applies stress to
C
Lb

are almost constant for small L /h, decreasing L /h causes the base of the upper layer. In any case, it appears that the
the instability time to increase in proportion to (L /h)−(n+1), maximum thickness of material effectively removed by the
with other factors constant. As the latter statement holds also initial growth of the instability in a time tb is Dh~L (Fig. 11a).
for n=1, as shown above in Section 3.2, a similar decrease in To estimate how much of the layer is removed after a greater
L has a greater impact for n=3 than for n=1. time interval, we must exploit the understanding already

Like the growth rates for n=1, the maximum values of C
Lb gained, for the finite-element algorithm cannot handle the

for linearly decreasing density are reached at smaller wave- distortion associated with removal of the basal layer without
numbers k∞max than they are for constant density. For instance, extensive regridding of the mesh. We first turn the question
for constant density and L /h=0.2171, k∞max>2 (Fig. 9), but around and ask what time period t

p
is required to remove the

for a density increasing linearly, k∞max is close to 1.5 (Fig. 10). thickness Dh=pL . The following argument, using a layer of

constant density as an example, is only approximate. If p=1
then, from Fig. 11(a),4.3 Density decreasing linearly with depth, viscous

substrate
t
p
#tb=

(Z
0
/L )1−n

(n−1) A nB
0

C
LDr

gDrL Bn . (20)
As for Newtonian viscosity, we added a lower layer four times
as thick as the upper denser layer, in order to simulate a half-

If p=2, the next increment in Dh is removed in a time that
may be estimated assuming Z0#L and increasing B0 by the* Houseman & Molnar (1997) quoted values of C

hb
for the case in

which b=2Dr/h. We remove the factor of 2 here. factor e. Succeeding increments may be calculated in the same
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The logarithmic dependence on time in eq. (23) shows that the

rate at which the layer is thinned decreases with increasing
time (Fig. 11b). The time required to remove the lowest part
of the lithosphere (Dh#L ) decreases rapidly as the amplitude

of the initial perturbation Z0/L increases, but further thinning
(Dh>~3L ) is so much slower that the total elapsed time
is insensitive to the time required for the initial instability

(Fig. 11b). The derivation of eq. (23) neglects a geometric factor
of order 1, which could change the slope of the line shown in
Fig. 11(b). Except, however, for the neglect of conduction of

heat, which limits the applicability of eq. (23) to the lithosphere,
the form of its time dependence should be robust.

5 INSTABILITY OF A NON-NEWTONIAN
LAYER DURING HORIZONTAL
SHORTENING

Most mountain ranges are built by crustal thickening due to
crustal shortening, and that shortening not only can create an

instability at the base of the lithosphere, but also could affect
the viscosity structure of the straining lithosphere. If the entire
lithosphere undergoes such shortening, and if it behaves like a

fluid with non-linear viscosity, such shortening should impose
a non-negligible background strain rate that will reduce the

effective viscosity of the lithosphere. If shortening occurs at an
approximately constant rate, it sets a constant value to the
second invariant of the strain rate tensor. With this back-

ground viscosity structure, a Rayleigh–Taylor instability should
initially grow exponentially (e.g. Conrad & Molnar 1997) with
a growth rate given by eq. (1), but with a viscosity given by

eq. (3). The dimensionless growth rate depends on the exponent
n relating stress and strain rate. Thus, for linearly decreasing
density and constant B, which we consider first here, q∞

h
(kh, r, n)

reaches a maximum near kh~1 (Conrad & Molnar 1997). In
Figure 11. (a) Estimated thickness of the layer Dh/L removed in time principle, when the perturbation grows sufficiently, and strain
t∞#t∞b during the initial instability and (b) extrapolated thickness Dh/L

rates due to the instability exceed the background strain rate,
removed after time t∞

p
>t∞b . In (a), thinning of the layer is measured from

the non-linear dependence of viscosity on strain rate should
the right-hand side of the finite-element mesh at times extrapolated to

cause the growth to become super-exponential, as in eqs (4)the time when the blob should have dropped to infinite depth. These
and (5).measurements show that for most runs Dh#0.7–0.9h for an inviscid

We carried out experiments with a layer undergoing shorten-underlying half-space, and Dh#1.2h for a viscous substrate. In (b),
ing in order both to verify that growth would initially betheoretical calculations of Dh/L using eq. (23) are plotted against t∞

p
on

a logarithmic scale using n=3 and C
LDr

=0.75, estimated from Fig. 9. exponential, and to examine the transition from exponential

growth appropriate to a constant background strain rate to
super-exponential growth. We first considered a layer of con-

way and summed:
stant rheological parameter B=B0 , and then a layer with a

viscosity coefficient decreasing exponentially in the layer
t
p
#tb+

1

(n−1) A nB
0

C
LDr

gDrL Bn ∑
p−1
j=1

ejn . (21) (eq. 10). In both cases, we used a layer with n=3 and with
density decreasing linearly with depth, overlying an inviscid

The summation assumes p is an integer, but it may be half-space. We imposed shortening by moving the right-hand
approximated by an integral in order to allow any real p>1: side of the layer at a constant rate u0 towards the left and by

imposing a constant horizontal displacement rate to the top
of the layer at z=h proportional to the distance from the leftt

p
#

1

(n−1) A nB
0

C
LDr

gDrL BnCAZ
0

L B1−n+ en/2

n
(e(p−1)n−1)D ,

edge:

(22) u(x)=−2u
0
x/l , 0≤x≤l/2 , z=h . (24)

and this equation can be inverted for t
p
>tb and L <Dh<h We then set the dimensionless rate such that super-exponential

to give the approximate thickness of lithosphere removed in growth would begin before the amount of shortening of the
time t∞

p
=t

p
(gDrL /B0 )n : layer reached a significant fraction of l. The two stages of

growth described above imply that there are two naturalDh

L
#1+

1

n
lnG1+ne−n/2CAC

LDr
n Bn (n−1)t∞

p
−AZ

0
L B1−nDH . timescales for these experiments. For the initial stage, we

analyze these experiments using a timescale that depends on
the convergence rate and is best for describing the exponential(23)
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growth stage. We then rescale the same data using the timescale

of (eq. 16), which is independent of the convergence rate and
is best for analysis of the super-exponential growth stage.

5.1 Constant rheological parameter B

We carried out many experiments before discovering a

combination of parameters that allowed exponential growth
initially but also permitted super-exponential growth to begin
before the layer had shortened by tens of per cent, which

would affect the wavelength of the instability. Because of the
assumption of incompressibility of the layer, shortening it
imposes a downward speed and displacement on the base of

the layer (due to uniform thickening). To estimate the growth
of the instability, therefore, we corrected the speeds and
positions of the lower left corner of the layer by the following:

wcorr=w+
2u
0
hl

(l−2u
0
t)2

, (25)

Figure 12. Plots of ln w◊corr and ln Z◊corr versus t◊ for a layer with

density decreasing linearly with depth, with constant rheologicalZcorr=Z+
2hu

0
t

(l−2u
0
t)2

. (26)
parameter B and with n=3 in eq. (3), where the layer shortens at a

constant speed u◊
0

(=u0Ths/h)=3.68×10−3. The layer overlies an
The corrections are positive because both w and Z are negative

inviscid half-space. The linearity of the initial data (bounded by the
for the lower left corner of the layer and u0 is treated as filled circles) defines the initial growth rate q◊

h
=qT

hs , where T
hs is

positive here. If the background perturbation is small, we may defined by eq. (28).
assume that the strain rate is uniform, Ė= ė

xx
=2u0/l and the

constant background viscosity from eq. (3) is

g
hs=

B

2 A2u
0

l B(1−n)/n . (27)

We rendered time dimensionless using a timescale based on

eq. (1) and the background viscosity (eq. 27):

T
hs=A B

gbh2BA2u
0

l B(1−n)/n , (28)

and rendered distance dimensionless using h. The subscript ‘s’

indicates shortening. We plotted ln w◊corr and ln Z◊corr versus t◊
(Fig. 12), and we measured the growth rates q◊

h
from the slopes

of the linear segments for small values of t◊. (We use double

primes to distinguish non-dimensionalization using eq. (28) in
place of eq. (16), although Z◊=Z∞.)

For small initial perturbations of Z0=0.001h or 0.0001h in
Figure 13. Plot of growth rates q◊

h
versus wavenumber k∞=kh, deter-eq. (13), and for sufficiently rapid shortening rates, initial

mined from finite-element calculations (symbols) and from linearizedgrowth is exponential (Fig. 12). Moreover, the experimental
calculations (lines), for a layer with density decreasing linearly, with

growth rates q◊
h
agree within a few per cent with those predicted

constant rheological parameter B and with n=3 in eq. (3), where
theoretically by Conrad & Molnar (1997) (Fig. 13). This the layer shortens at constant speed. The layer overlies an inviscid
agreement demonstrates that shortening, by imposing a higher half-space. Open and solid symbols as in Fig. 4. Note that for cases
strain rate than is caused by the growth of the instability, with small initial perturbations of Z0=0.001h (triangles) or 0.0001h
causes the layer to behave as if its viscosity is constant and (diamonds) in eq. (13), the calculated and theoretical growth rates q◊

h
agree, but for larger initial perturbations (× or +), they do not. Therelatively low.
basic assumptions of the linearized calculations are invalid when theThis agreement, however, holds only for Z0%0.01h. For
initial perturbations are too large.initial perturbations of Z0=0.01h, which hardly seem large,

but nevertheless are much larger than those used for the

results that match the theory (Figs 12 and 13), we estimated where both shortening and growth of the instability combine
to cause the bottom of the layer to move downward, highexponential growth rates that differ by tens of per cent from

those with smaller perturbations (Fig. 12). When the pertur- strain rates make the viscosity relatively small. On the right-

hand side, however, the instability causes the right-hand sidebation is small (Z0≤0.001h), initially the only deformation
of the layer is due to shortening and thickening of it at a to thin, but shortening causes it to thicken. Thus, the right-

hand side behaves like a stagnant, non-deforming region, andconstant strain rate; therefore the viscosity throughout the

layer is nearly constant. For runs with the larger perturbations the low strain rates make the viscosity there large.
These spatial variations in strain rate result in variations in(Z0=0.01h), however, the instability grows sufficiently rapidly

that strain rates vary through the layer. On the left-hand side, viscosity that shorten the effective length of the deforming
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region and make the instability become localized where the

viscosity is lowest. For a length of the layer corresponding to
wavelengths and wavenumbers near those appropriate for
maximum growth rate (k∞~k∞max ), the reduction in the effective

length of the deforming region makes the effective wavenumber
larger than that for maximum growth rate: k∞>k∞max . Thus,
measured growth rates for large perturbations are less than

those for small perturbations, for which the entire width of the
layer is involved in the instability. For the largest wavelength
that we studied (l=6h) and therefore the smallest wavenumber,

k∞=1.05, however, reducing the effective length of the layer
allows an instability with k∞ closer to k∞max to grow; hence the
growth rate for a large perturbation is greater than that for a

small perturbation (Fig. 13).
Following a period of initial exponential growth, after the

base of the layer has deformed sufficiently, growth becomes
Figure 15. Plot of measured values of C

hb
versus k∞ for a layer withsuper-exponential. We rescaled the output of the previous

density decreasing linearly with depth, with constant rheologicalexperiments so that time is now rendered dimensionless by
parameter B, where horizontal shortening of the layer occurs at aT

hb
= (B/gbh2 )n , analogous to eq. (16); distance is rendered

constant rate.
dimensionless by h, and speed by h/T

hb
. Fitting the values of

w∞corr and Z∞corr in eqs (25) and (26) to curves of the form
of eqs (4) and (5) again yields straight lines (Fig. 14), with rules describing the development of the instability with time,
values of C

hb
(Fig. 15) similar to those obtained for layers which are separated by a third, brief transition stage.

without imposed horizontal shortening. Houseman & Molnar The transition from initially exponential to later super-
(1997) obtained* C

hb
#0.47 at kh=2.09. The values of C

hb exponential growth requires a finite time, but we may approxi-
are independent of the shortening rate, as expected for this mate it as abrupt. For the initial, exponential growth (eq. 1) of
stage in development, where growth is rapid compared to the both downward speed and position,
shortening rate. Growth consists of two stages that obey simple

w(t)=qZ(t)=CAgbh2

B BA2u
0

l B(n−1)/nq◊h (kh)DZ(t) , (29)

where q is obtained from eqs (28) and (1). Later, in the
super-exponential phase, from eqs (4) and (5) (using bh in

place of Dr),

w(t)=hAChb
(kh)

gbh

nB
Z(t)Bn . (30)

Thus, from eqs (29) and (30), the transition should occur at

the following dimensional values of w and Z:

Zt=A B

gbhBA n

C
hb
Bn/(n−1)A2u

0
l B1/nq◊1/(n−1)h

, (31)

wt=hA2u
0

l BAnq◊
h

C
hb
Bn/(n−1) . (32)

We may test these relationships by plotting ln w∞corr versus
ln Z∞corr (Fig. 16). As expected, for the initial stage when
growth is exponential, ln w∞corr and ln Z∞corr vary linearly with

one another. For the later, super-exponential stage, the slope
of ln w∞corr versus ln Z∞corr is 3, as it should be from eq. (30).Figure 14. Plots of Z∞1−ncorr and w∞1/n−1corr versus t∞, with times non-
The final super-exponential stages are virtually identical,dimensionalized by eq. (16), but with bh=Dr, for a layer with density
showing no dependence on the rate of shortening. The initialdecreasing linearly with depth, with constant rheological parameter B

and with n=3, where the layer undergoes horizontal shortening at a exponential phases, however, clearly do depend on that rate;
constant speed of u∞

0
(=u0Thb/h)=5×10−8. In the inset, part of the with faster shortening, and therefore lower viscosity, initial

exponential growth is shown (here as a decay because of the negative speeds are higher. Moreover, the transition from exponential
power), but near t∞=11×105, super-exponential growth takes over. to super-exponential growth occurs for a larger growth of
For the largest values of t∞, indicated by the filled circles, the linear fits the perturbation to the boundary, as seen in eq. (31). Such
of Z∞1−ncorr and w∞1/n−1corr versus t∞ demonstrate super-exponential growth,

linearity for the two branches is clearest for runs that examine
with straight lines used to define the values of C

hb
.

wavenumbers close to k∞max .
Given an initial displacement Z0 , we can now compute* Houseman & Molnar (1997) (p. 144) in fact obtained C

hb
#0.94, but

the approximate time interval tb required for removal of thebecause their non-dimensionalization of density differs by a factor of

2 from ours, so does their definition of C
hb

. lower part of the layer. This interval consists of two terms,
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Figure 17. Plot of growth rates q◊
L
=qT

Ls (Table 2), measured from

experiments (symbols) and from linearized calculations (lines), versus

wavenumber k∞=kL , for a layer undergoing shortening at a constant
Figure 16. Plots of ln w∞corr versus ln Z∞corr for a layer with density rate, with density decreasing linearly in the layer, and with the
decreasing linearly with depth, with constant B, where horizontal rheological parameter B decreasing exponentially with depth. The
shortening of the layer occurs at a constant rate: × u∞

0
(=u0Thb/h)= layer overlies an inviscid half-space. Open and solid symbols as

1×10−8 ; # u∞
0
=2×10−8 ; + u∞

0
=5×10−8. The layer overlies an in Fig. 4.

inviscid half-space. Notice that for small w∞corr and Z∞corr , when growth

is exponential, w∞corr and Z∞corr are proportional, but then a transition

to super-exponential growth occurs, where w∞corr is proportional to the

cube of Z∞corr . When the background strain rate is highest (+) and

viscosity is lowest, exponential growth is most rapid and proceeds

further before super-exponential growth takes over.

tl=q−1 ln(Zt/Z0 ) describing the interval of exponential growth
from Z0 to the transition amplitude Zt (eq. 31), plus tnl
describing the interval of non-linear power-law growth from
Zt to completion of the instability [with Zt from eq. (31) used
in place of Z0 in eq. (6)]:

tb=tl+tnl=
1

q◊
h
A B

gbh2BA2u
0

l B(1−n)/nC 1

(n−1)
+ lnAZt

Z
0
BD .

(33)

Figure 18. Plot of measured values of C
Lb

versus k∞, for a layer with5.2 Rheological parameter B varying exponentially with
density decreasing linearly and with the rheological parameter Bdepth in the layer
decreasing exponentially with depth, where horizontal shortening of

Above, in Section 4, we showed that the same relationships the layer occurs at a constant rate. The shading shows results from

runs without horizontal shortening (Fig. 10).that had worked for a layer of constant rheological parameter
B (Houseman & Molnar 1997) also worked for B decreasing

exponentially with depth in the layer, provided only that we L /h, as calculated from linear theory following the same
procedures as used by Conrad & Molnar (1997) (Fig. 17). Touse the length scale L in place of h. The differences manifest

themselves as different dimensionless constants C (whose inter- analyse the final stages of growth in these experiments, we

rescaled the output so that distance is again rendered dimen-relationships are shown in Table 3). Here we again test
whether the same basic rules shown to apply to a layer with sionless by L but time is now rendered dimensionless using

T
Lb

(Table 2), and speed using L /T
Lb

. Plots of Z∞1−ncorr anda constant rheological parameter—those that describe an
initial exponential growth (eq. 1) and a final super-exponential w∞(1/n−1)corr versus t∞ for the final stages of growth also obey forms

like eqs (18) and (19) or eqs (4) and (5). Moreover, mostgrowth (eqs 4 and 5)—also apply to the case where the

rheological parameter B decreases exponentially with depth to values of C
Lb

as a function of k∞ (Fig. 18) agree within about
10 per cent with those obtained for layers that did not undergoB0 at z∞=0.

We define a time unit T
Ls= (B0/bgL 2 )(2u0/l)1/n−1 using shortening.

The initial exponential phase followed by a super-eq. (28), with L in place of h to render distance dimensionless.
Plots of ln w◊corr and ln Z◊corr versus t◊, with corrections to w◊ exponential phase obeying a form like eqs (18) and (19) implies

that the relationships between w and Z in eqs (29)–(30) shouldand Z◊ again made as in eqs (25) and (26), yield straight lines,

showing that the initial growth is exponential. The measured apply again, but, of course, with h replaced by L , and with
the appropriate values of q◊

L
(Fig. 17) and C

Lb
(Fig. 18) useddimensionless growth rates q◊

L
are essentially independent of

the rates of shortening and depend only weakly on the ratio in them. Plots of ln w∞corr versus ln Z∞corr again show clearly
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the transition from exponential growth to power-law growth, we expect to be unstable. Using the parameters given above

and the steeper temperature gradient (8 K km−1), L =12 kmalthough for runs with a viscosity variation of 100 times
(L =0.2171h), the super-exponential phase is not matched for dry olivine, and L =13 km for wet olivine. The values of L

for the 4 K km−1 temperature gradient are twice as large. [Forprecisely by the simplified theory. The amplitude at which the

transition occurs is now the parameters given by Hirth & Kohlstedt (1996), the values
for dry olivine give L =12 and 24 km, and those for wet olivine
give L =12 and 25 km.]ZtL=A B

0
gbL BA n

C
Lb
Bn/(n−1)A2u

0
l B1/nq◊1/(n−1)L

. (34)

6.1 Thickness of lower lithosphere removed by the
6 APPLICATION TO THE EARTH instability
Below, we apply the results given above to the Earth. To do The value of B decreases by several orders of magnitude
so, we must first choose values for the relevant parameters B0 , through the lithosphere. Yet, several studies of convection in
n, g, b and L . For the Earth, g=9.8 m s−2. a medium with temperature-dependent viscosity show that

Assuming that only temperature affects the density, we only a portion across which the viscosity varies by 10 to 100
must assume a temperature gradient to estimate b. For litho- times is vigorously involved in the convection (e.g. Buck &
sphere with 35 km of crust, with a temperature h=800 K Toksöz 1983; Fleitout & Yuen 1984; Jaupart & Parsons 1985;
at the Moho and h=1600 K at the base of the lithosphere Moresi & Solomatov 1995; Yuen & Fleitout 1984). The
100 km deeper, dh/dz=−8 K km−1. For a lithosphere twice remaining upper, colder part is nearly stagnant. Presumably,
as thick, either initially or after thickening by two times, during steady-state convection, only this basal, lowest-viscosity
dh/dz=−4 K km−1. With the density gradient given by part of the lithosphere participates.
dr/dz=−ar(dh/dz), with a=3×10−5 K−1 and r= Mechanical thickening of the lithosphere, however, should
3.35×103 kg m−3, b=8×10−4 kg m−4 or 4×10−4 kg m−4 increase the thickness of the layer that is unstable. Our
for these two temperature gradients. experiments have considered a range of B that spans only a

We use laboratory measurements of the temperature factor of 100 and therefore might seem to address only the
dependence of deformation of olivine (e.g. Goetze 1978; Karato, bottommost part of the lithosphere. Note, however, that for
Paterson & Fitzgerald 1986) to constrain the rheological n=3 (at a constant stress level), a variation in B by a factor
parameter B appropriate to the mantle and necessary for of 100 causes a range of ~106 in the effective viscosity across
evaluating L . In Appendix A, we derive the relationship the layer. Recall also that these experiments considered cases
between deviatoric stress and strain rate appropriate to such in which the unstable layer is underlain by either an inviscid
measurements: half-space or a viscous layer assigned the same value of B as

that at the base of the layer (Fig. 19). Thus, these experiments
B=3−(n+1)/2nAA

2 B−1/n expA H

nRhB , (35) can be used to bound the growth of unstable portions of
mantle lithosphere where the viscosity exceeds that of the

where A is an experimentally determined constant, H is asthenosphere by factors much greater than 100. In any case
the activation enthalpy, R is the universal gas constant there is every indication that the asymptotic scaling that we
(=8.3 J K−1 mole−1) and the numerical constant arises from have found is valid for all L less than about h.
using second invariants of the stress and strain rate tensors Houseman & Molnar (1997) showed that, for a layer with
to express the laboratory measurements (see Appendix A). constant properties, the dimensionless time t∞b for a blob of
Karato et al. (1986) gave, for dry olivine, n=3.5, A= material to drop off the rest of the layer could be related to
2.4×105 s−1 MPa−3.5 and H=540 kJ mole−1 and, for wet the dimensionless initial perturbation of the bottom, Z∞0 , by
olivine, n=3, A=1.9×103 s−1 MPa−3 and H=420 kJ mole−1.
To estimate L , we may approximate eq. (35) by t∞b=A n

CBn Z∞(1−n)
0

(n−1)
. (40)

B=3−(n+1)/2nAA

2 B−1/n expA H

nR[h
0
+ (dh/dz)z]B , (36)

The experiments described above verify that the equations
used to derive eq. (40) apply also to cases where the viscosity

where dh/dz is the temperature gradient in the lithosphere. We decreases exponentially with depth and the density decreases
may approximate eq. (36) by linearly with depth in the layer. Thus, we may employ the

dimensional form of eq. (40), with eq. (14) to dimensionalize
B#B

0
expA−H(dh/dz)z

nRh2
0

B , (37) distance and eq. (16) for time:

which, from eq. (10), implies that tb=A nB
0

C
bL

gbL 2Bn (Z
0
/L )1−n

n−1
. (41)

L #−
nRh2

0
H(dh/dz)

(38) This provides a relationship between the initial perturbation
and the time that must elapse for removal of the base of the

and layer. Note that if (1) we assume the flow parameters for
wet olivine, (2) we use the value of C

bL
=0.3 appropriate to a

B
0
=3−(n+1)/2nAA

2 B−1/n expA H

nRT
0
B . (39) layer over a viscous half-space (Fig. 10), (3) we associate B0

with the base of the lithosphere, where h=1623 K (for which
B0=800 MPa s1/3 ) and (4) we assume a perturbation of magni-To estimate L , let us choose h0=1323 K (1050 °C), a temper-

ature in the lower lithosphere within the interior of the area tude Z0~L to the base of the lithosphere, then a thickness
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Let us suppose that the entire lithosphere was thickened to

twice its normal value, letting Z0=100 km, and that the

temperature gradient was halved from 8 K km−1 to 4 K km−1.
From Fig. 10, we use C

bL
=0.35, appropriate to wet olivine,

for which n=3. Houseman & Molnar (1997) showed that for

constant density and rheological parameter in the layer, C

depends weakly on n; assuming a similar variation for the

cases considered above, we use C
bL
=0.45 for dry olivine, for

which n=3.5 (e.g. Hirth & Kohlstedt 1996). Let us consider the

thickness that would be removed after 10 Myr. With L=24 km

or 25 km, appropriate to dry or wet olivine, we estimate

from eq. (42) B0=1.5×1010 Pa s1/3.5 or B0=6.0×1010 Pa s1/3
respectively. From eq. (35), these values of B0 imply values

of temperature of 1361 K (1088 °C) and 1203 K (930 °C)

respectively. Recognizing that material of thickness ~L above

this level is removed (Fig. 11a), these temperatures under-

estimate the amount of lithosphere convectively removed.

Additional thicknesses of ~L correspond to material ~100 K

colder than that deduced from B0 . Thus, assuming that Ray-Figure 19. Plot of rheological parameter B versus depth z, and its
leigh–Taylor instability applies to these two cases, we expectrelationship to the values of B0 and L used in our experiments. B
that for dry olivine, material colder than the asthenosphere bydecreases continuously with depth through the lithosphere. We carried

out experiments with layers in which B decreases exponentially with ~400 K, and for wet olivine, material colder by ~500 K
depth, over an inviscid half-space and over a viscous half-space in would be removed. With a gradient of 4 K km−1, such tempera-
which B is constant and equal to the value at the base of the layer. ture contrasts correspond to thicknesses ranging from ~100
These two states bound the realistic case in which B decreases

to 125 km of mantle lithosphere, previously thickened to
continuously with depth. For an increased duration of time, a layer of

~200 km. Thus, they permit convective removal of somewhat
increased thickness should become unstable. Thus we seek a value of

more than half of the lithosphere, but not the entire mantleB0 appropriate to the base of an unstable layer that grows in a
lithosphere. These estimates of the thickness of lithospherespecified amount of time. Then from the corresponding inferred
that may be involved in a convective thinning event do nottemperature and depth, we estimate the thickness of material, both

above and below the depth associated with B0 , that would be removed greatly differ from those of Houseman & Molnar (1997), who
in the specified time. based their estimates on the behaviour of an unstable layer

whose rheological parameter is constant.

~L (=24 km) of the basal lithosphere would be removed in a
geological instant, tb=600 yr! Obviously, a much thicker layer
will be removed during the period typically required for 6.2 Growth of the perturbation during shortening
lithospheric thickening.

We arbitrarily chose a doubling of the thickness of the litho-The short timescale for the initial instability in a stratified
sphere by mechanical processes, but if shortening occurs, thelayer whose strength parameter decreases with depth, coupled
super-exponential phase should be preceded by an exponentialwith the relatively thin layer removed by the initial instability,
phase. Eq. (31) relates the magnitude of the layer thicknesshas been used previously to argue that convective thinning of
perturbation that develops before super-exponential growththickened lithosphere would have little effect on the thermal
sets in to the rheological parameters, and to the backgroundstructure of the lithosphere (Buck & Toksöz 1983). This
strain rate. Rendering eq. (31) appropriate to exponentialargument is misleading, however, because the lithosphere
variation of the rheological parameter yieldscontinues to be thinned (at a decreasing rate) long after the

initial instability. Our experiments were limited to the period
that describes the initial instability (Fig. 11a), which we Zt=A B

0
bgL BA n

C
bL
Bn/(n−1)A2u

0
l B1/nq◊1/(n−1)L

. (43)
extrapolated to obtain an approximate theory that describes

the timescale by which succeeding, higher-viscosity layers of the
To evaluate eq. (43), let us use the estimates of B0 obtainedlithosphere are removed (Fig. 11b). A simple way to estimate

above for dry and wet olivine (1.5×1010 Pa s1/3.5 andthe total thickness removed in a given time period follows
6.0×1010 Pa s1/3 respectively). Let us assume that shorteningfrom the assumption that most of the period is occupied by
occurs at a rate of 100 per cent in 20 Myr, correspondingthe removal of the uppermost, most viscous part of the layer

that is removed. We take this approach and invert eq. (41) to to Ė=2u0/l=1.58×10−15 s−1. With q◊
L
=0.35, we obtain

evaluate the value of B0 appropriate to a hypothesized time tb Zt=107 km for dry olivine and 108 km for wet olivine. As
for removal of this uppermost sublayer: these values of Zt depend weakly on the background strain

rate (on its nth root), more or less rapid straining will not

affect the amounts much. The linear dependences on B0 andB
0
=

C
bL

gbL u

n
n√(n−1)tbLZn−1

0
. (42)

on the product bL govern the uncertainty in Zt . In any case,

the magnitude of the values obtained suggests that the layerThen, from an estimate of B0 appropriate to an assumed time
is likely to develop major thickness perturbations during thetb , we use eq. (39) to estimate the corresponding temperature

and thickness of the layer removed. exponential phase of growth associated with crustal shortening.

© 1998 RAS, GJI 133, 568–584



Instability and convective thinning 583

England, P.C. & Houseman, G.A., 1989. Extension during continental
6.3 Summary of applications to the Earth convergence, with application to the Tibetan Plateau, J. geophys.

Res., 94, 17 561–17 579.First, we emphasize that the main goal of this study has not
Fitton, J.G., James, D., Kempton, P.D., Ormerod, D.S. &been to model the Earth, but rather to obtain an understanding

Leeman, W.P., 1988. The role of lithospheric mantle in the generationof how specific structural conditions and processes appropriate
of late Cenozoic basic magmas in the western United States,

to the Earth might affect the gravitational instability of an
J. Petrol., Spec. L ithosphere Issue, 331–349.

unstable viscous layer such as the Earth’s lithosphere. These
Fleitout, L. & Yuen, D.A., 1984. Steady state, secondary convection

conditions include non-linear relations between stress and beneath lithospheric plates with temperature- and pressure-
strain rate, an exponentially decreasing rheological parameter, dependent viscosity, J. geophys. Res., 89, 9227–9244.
a linearly decreasing density and an externally imposed hori- Goetze, C., 1978. The mechanisms of creep in olivine, Phil. T rans. R.
zontal shortening of the layer. The main results are expressed Soc. L ond., A, 288, 99–119.
in algebraic equations that relate times, rates and amounts of Hirth, G. & Kohlstedt, D.L., 1996. Water in the oceanic upper mantle:

implications for rheology, melt extraction and the evolution of thegrowth of perturbations to the material parameters.
lithosphere, Earth planet. Sci. L ett., 144, 93–108.The application of these equations to the Earth suggests

Houseman, G.A. & Molnar, P., 1997. Gravitational (Rayleigh–Taylor)that for a timescale of approximately 20 Myr, during which
instability of a layer with non-linear viscosity and convectivethe lithosphere in zones of rapid crustal shortening will be
thinning of continental lithosphere, Geophys. J. Int., 128, 125–150.mechanically thickened by roughly two times, exponential

Houseman, G.A., McKenzie, D.P. & Molnar, P., 1981. Convectivegrowth will cause perturbations of the base of the lithosphere
instability of a thickened boundary layer and its relevance for the

to grow to amplitudes of the order of 100 km. Then, in a
thermal evolution of continental convergent belts, J. geophys. Res.,

subsequent period of comparable length (~20 Myr), complete 86, 6115–6132.
removal of a layer of lower lithosphere, also of the order of Jaupart, C. & Parsons, B., 1985. Convective instabilities in a variable
100 km thick, can occur for rheological parameters and other viscosity fluid cooled from above, Phys. Earth planet. Inter., 39,
assumptions appropriate to the lithosphere in zones of 14–32.
active convergence. These calculations corroborate those of Jordan, T.H., 1975. The continental tectosphere, Rev. Geophys. Space

Houseman & Molnar (1997) in suggesting that half or more Phys., 13, 1–12.

Karato, S.-I., Paterson, M.S. & FitzGerald, J.D., 1986. Rheology of(though probably not all ) of the mantle lithosphere may be
synthetic olivine aggregates; influence of grain size and water,removed by the convective thinning process following con-
J. geophys. Res., 91, 8151–8176.vergent orogeny. Because we ignored lateral conduction of

Lenardic, A. & Kaula, W.M., 1995. More thoughts on convergentheat in analysing Rayleigh–Taylor instability, the thicknesses
crustal plateau formation and mantle dynamics with regard to Tibet,of material removed might be overestimated (and the times for
J. geophys. Res., 100, 15 193–15 203.

convective thinning might be underestimated) here (e.g. Conrad
Molnar, P., England, P. & Martinod, J., 1993. Mantle dynamics,

& Molnar 1997). The effect of thermal conduction on these
the uplift of the Tibetan Plateau, and the Indian monsoon, Rev.

estimates is essentially a correction, reducing growth rates in
Geophys., 31, 357–396.

the stage of exponential growth but, on these timescales of Moresi, L.-N. & Lenardic, A., 1997. Three-dimensional numerical
20–40 Myr, not changing the basic pattern of the process that simulations of crustal deformation and subcontinental mantle
we have described here. convection, Earth planet. Sci. L ett., 150, 233–243.

Moresi, L.-N. & Solomatov, V.S., 1995. Numerical investigation of 2D

convection with extremely large viscosity variations, Phys. Fluids,ACKNOWLEDGMENTS
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where the ‘1’ direction is along the axis of compression, s is Expressing t11 in terms of q in eq. (A4) yields

the stress and A, H, R and h are as defined in Table 1.
Assuming incompressibility and symmetry, ė

11
=A3

2BnAA 2

√3
qBn−1t

11
expA−H

Rh B
=

3(n+1)/2
2

Aqn−1t
11

expA−H

Rh B . (A7)
1

2
ė
11
=−ė

22
=−ė

33
(A2)

Therefore, if eq. (A5) (for the general triaxial configuration) is
and assuming isotropy, to apply also to the experimental data (uniaxial compression),

we require

t
11
=−2t

22
=−2t

33
. (A3)

A∞=
3(n+1)/2

2
A . (A8)

Rewriting eq. (A1) in terms of deviatoric stress, We invert (A5) by squaring and summing over all components
to get

ė
11
=A(t

11
−t

33
)n expA−H

Rh B=A3

2BnAtn
11

expA−H

Rh B . ∑
ij

ė
ij

ė
ij
=∑

ij
t
ij

t
ij
A∞2q2(n−1) expA−2H

Rh B , (A9)

(A4) which, using eq. (A6), gives an expression for the second
invariant of the strain rate,

Translating this into an expression invariant with respect to

the definition of axes yields Ė=A∞qn expA−H

Rh B , (A10)

and hence, substituting for q back into eq. (A5), we obtain
ė
ij
=A∞qn−1t

ij
expA−H

Rh B , (A5)

t
ij
=A∞−1/nĖ(1−n)/n ė

ij
expA H

nRhB . (A11)

where q2 is the second invariant of the deviatoric stress tensor. If we now write eq. (A11) in the usual form for use in viscous
In the experimental measurements, shear stress components flow, given by eq. (2), we obtain
can be neglected, and the second invariant is then

B=A∞−1/n expA H

nRhB=3−(n+1)/2nAA

2B−1/n expA H

nRhB .

q2=
1

2
(t2
11
+t2

22
+t2

33
)=A3

4B t2
11

. (A6)
(A12)
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