
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. B8, PAGES 17,551-17,571, AUGUST 10, 1999 

Effects of plate bending and fault strength at 
subduction zones on plate dynamics 
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Abstract. For subduction to occur, plates must bend and slide past overriding 
plates along fault zones. Because the lithosphere is strong, significant energy 
is required for this deformation to occur, energy that could otherwise be spent 
deforming the mantle. We have developed a finite element representation of a 
subduction zone in which we parameterize the bending plate and the fault zone 
using a viscous rheology. By increasing the effective viscosity of either the plate or 
the fault zone, we can increase the rates of energy dissipation within these regions 
and thus decrease the velocity of a plate driven by a given slab buoyancy. We 
have developed a simple physical theory that predicts this slowing by estimating a 
convecting cell's total energy balance while taking into account the energy required 
by inelastic deformation of the bending slab and shearing of the fault zone. The 
energy required to bend the slab is proportional to the slab's viscosity and to the 
cube of the ratio of its thickness to its radius of curvature. The distribution of 

dissipation among the mantle, lithosphere, and fault zone causes the speed of a plate 
to depend on its horizontal length scale. Using the observation that Earth's plate 
velocities are not correlated to plate size, we can constrain the lithosphere viscosity 
to be between 50 and 200 times the mantle viscosity, with higher values required if 
the fault zone can support shear tractions • 50 MPa over 300 km. These subduction 
zone strengths imply that the mantle, fault zone, and lithosphere dissipate about 
30%, 10%, and 60% of a descending slab's potential energy release if the slab is 100 
km thick. The lithospheric component is highly dependent on slab thickness; it is 
smaller for thin plates but may be large enough to prevent bending in slabs that 
can grow thicker than 100 km. $ubduction zone strength should be more stable 
than mantle viscosity to changes in mantle temperature, so the controlling influence 
of subduction zones could serve to stabilize plate velocities over time as the Earth 
cools. Because the "details" of convergent plate boundaries are so important to the 
dynamics of plate motion, numerical models of mantle flow should treat subduction 
zones in a realistic way. 

1. Introduction 

The tectonic motions of Earth's plates are thought 
to represent the upper boundary layer of convection 
in the mantle. This boundary layer founders in a few 
localized downwellings known as subduction zones in 
which one plate dives beneath another into the man- 
tle's interior. It is thought that the negative buoyancy 
associated with cold, dense slabs drives plate motions 
by pulling on the surface plates to which these slabs 
are attached [e.g., Chapple and Tullis, 1977; Forsyth 
and Uyeda, 1975; Hager and O'Connell, 1981; Lithgow- 
Bertelloni and Richards, 1995]. The cold temperatures 
of the boundary layer make it not only denser but stiffer 
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than the mantle, a fact that has important implications 
for convection in the mantle. For example, several au- 
thors [e.g., Bunge and Richards, 1996; Davies, 1988; 
Gurnis and Zhong, 1991] have noted that the long- 
wavelength structure of mantle flow is at least partly 
controlled by the existence of strong surface plates. 

Convection of a fluid with a strong upper bound- 
ary layer has been studied by several authors. In flu- 
ids with temperature-dependent viscosity, Jaupart and 
Parsons [1985] found that two length scales of instabil- 
ity are possible. For large viscosity contrasts between 
the boundary layer and the underlying fluid, deforma- 
tion of the entire upper boundary layer becomes suffi- 
ciently difficult that it cannot participate in convection. 
In this case, short-wavelength instabilities develop be- 
low a "rigid lid." For intermediate viscosity contrasts 
the upper boundary layer can participate in the convec- 
tive circulation, but its strength produces wavelengths 
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that are longer than would be expected for an isovis- 
cous fluid. $olomatov [1995] describes this convective 
regime as a transitional one between the isoviscous and 
the rigid lid regimes, distinguished by the significant 
resistance to flow offered by the cold boundary layer. 
This resistance can rival that due to shearing of the in- 
terior, meaning that the strong upper boundary layer is 
important in determining convective behavior. 

Because the boundary layer is so important, the de- 
tails of how it deforms should be important as well. 
In standard isoviscous boundary layer theory, first used 
to describe mantle convection by Turcott½ and Oxburgh 
[1967], downwellings are symmetrical and result in hor- 
izontal shortening of the material at the surface above 
them. Thus, some material at the surface stagnates 
above the descending plume while cold material from 
either side flows beneath it. The downwellings associ- 
ated with plate-scale convection in the mantle do not 
behave in this manner. Instead, in a subduction zone, 
one plate bends and descends into the mantle beneath 
another, even if both plates are composed of oceanic 
lithosphere. This one-sided downwelling allows more of 
the thermal buoyancy of the boundary layer to partic- 
ipate in driving plate motions than is achieved in the 
rigid lid or isoviscous styles of convection. It is not 
clear, however, if this increased buoyancy is offset by 
the increased resistance to deformation imposed by the 
subducting plate's strength. 

There is evidence that resistance to convection is cre- 

ated by the subduction zone. First, the seismicity of 
Wadati-Benioff zones illuminates the location of the 

slab [e.g., Isacks and Barazangi, 1977; Giardini and 
Woodhouse, 1984]. The fact that energy is released by 
earthquakes within the slab indicates that the descend- 
ing lithosphere must generate at least some resistance to 
mantle convection. In addition, the focal mechanisms 
associated with this seismicity seem, in some cases, to 
indicate a stress pattern in the slab characteristic of 
bending as the slab begins to descend, and unbend- 
ing as it straightens out and continues into the mantle 
[e.g., Beyis, 1986; Has½9awa et al., 1994; Kawakatsu, 
1986]. The dissipation of energy within the slab as it 
both bends and unbends indicates that at least some 

of the bending deformation is inelastic and is undone 
by more inelastic deformation in an unbending process 
[e.g., Chapple and Forsgth, 1979]. 

The presence of inelastic deformation in the slab is in- 
dicative of the type of rheology that controls the slab's 
behavior. The topography and gravity of trenches asso- 
ciated with subduction can be explained by theoretical 
models of the bending of an elastic plate ,-• 30 km [hick 
[e.g., Hanks, 1971; Watts and Talwani, 1974]. If the 
radius of curvature of a bending plate is R = 200 km 
[e.g., Beyis, 1986], its Young's modulus is E = 70 GPa 
[e.g., Turcott½ and Schubert, 1982, p. 106], and its Pois- 
son's ratio is u = 0.25, we estimate, following Turcott½ 
and Schubert [1982, p. 114], that the maximum bending 
stresses in the plate must be of order 6000 MPa. This 

figure is about an order of magnitude larger than the 
maximum strength of oceanic lithosphere [e.g., Kohlst- 
½dt ½t al., 1995], so at most only 10% of elastic bend- 
ing stresses can be supported. The remaining stress 
must be relaxed by an inelastic deformation mechanism. 
For an elastic-plastic or elastic-brittle theology, elastic 
stresses greater than the maximum yield stress are re- 
lieved by fracturing of the rock [e.g., Turcott½ and Schu- 
bert, 1982, pp. 341-345]. This type of theology can pro- 
duce the seismicity distributions of the Benioff zones, 
which are, perhaps coincidentally, also • 30 km wide 
[e.g., Hasegawa et al., 1994; Jarrard, 1986; Kawakatsu, 
1986]. In a viscoelastic rheology, viscous strains relax 
large elastic stresses [e.g., Turcotte and Schubert, 1982, 
pp. 337-340]. We expect the lithosphere to exhibit some 
viscous properties because it is partly composed of cold 
mantle material, and the mantle certainly behaves as 
a highly temperature-dependent viscous fluid. In fact, 
some authors have shown that trench topography can 
be explained by the loading of a viscous plate [e.g., De 
Brema½cker, 1977], by viscous stresses associated with 
bending [e.g., M½losh and Raefskg, 1980], or by viscous 
coupling of the surface to the negative buoyancy of the 
slab [e.g., Sleep, 1975; Zhong and Gumis, 1994]. 

The oceanic lithosphere probably experiences all of 
the above mentioned deformation mechanisms at var- 

ious stages during subduction, making a full descrip- 
tion of the applicable constitutive relation extraordi- 
narily complicated. We recognize, however, that all 
of the deformation mechanisms, with the exception of 
elastic bending, dissipate energy and thus retard the 
flow of the lithosphere into the mantle. In what fol- 
lows, we estimate the energy dissipated by a deforming 
slab assuming viscous flow and compare it to the en- 
ergy dissipated by flow in the underlying mantle. In 
doing so, we are able to determine how plate veloci- 
ties depend on the material strength of the subducting 
lithosphere, which we express as the lithosphere's "ef- 
fective" viscosity. Because we are simply performing an 
energy balance, this parameter can be thought of as al- 
lowing viscous flow to dissipate the same energy that 
would be dissipated if all of the complicated deforma- 
tion mechanisms were included. Because the effective 

lithosphere viscosity results from some combination of 
many deformation mechanisms whose relative and abso- 
lute strengths are not known, we treat the effective vis- 
cosity as a variable upon which plate velocity depends. 
Using Earth's observed distribution of plate velocities, 
we hope to constrain the value of this parameter and, as 
a result, the importance of subduction to the large-scale 
convective structure of Earth. 

2. Viscous Dissipation 

One way to determine the relative importance of the 
slab, fault zone, and mantle is to compare the energy 
dissipated in deforming each of these regions. To do 
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this, we start with conservation of momentum for a con- 
tinuous medium: 

where fi is a body force, rrij is the stress, p is density, 
t is time, and ui and xi are the velocity and distance 
components. To obtain an expression for energy, we 
multiply (1) by ui and integrate over a volume V. After 
some manipulation [e.g., Chandrasekhar, 1961, pp. 12- 
14], we obtain 

where S is the surface of the volume V. These five 

terms express the energy balance for viscous flow, and 
only the last two contribute significantly for the mantle. 
The left-hand side gives the rate at which the fiuid's ki- 
netic energy changes with time and is negligible if the 
Reynolds number is low, as it is for the mantle. The 
first term on the right-hand side is the rate at which 
stresses do work on the boundary of V. If V is the vol- 
ume of a closed convecting cell with free-slip boundary 
conditions, this term is zero. 

The middle term on the right-hand side of (2) rep- 
resents the rate at which work is done on the medium 

by the deformation. It is useful to decompose the total 
stress •i5 into its pressure p and deviatoric ri5 compo- 
nents: 

• = -p•i• + r• (3) 

where •ii is the Kronecker delta function. Defining the 
strain rate 

- + j (4) 
the rate of work integral can be written 

The first term on the right-hand side of (8) represents 
the increase in internal energy due to changes in vol- 
ume, while the second term represents strain energy 
dissipated by shearing of the material. 

At this point, we make the simplifying assumptions 
that the material is incompressible, •ii = 0, and that 
its rheology can be expressed as that of a fluid, with an 
effective viscosity • that can be a function of position: 

vii = 2•]•ij (6) 
Then the rate at which work is done on the material is 

- rijeijdV- 2 rl•ij•ijdV (7) 

where (I) vd is the total rate of viscous dissipation. 

For an isoviscous mantle the fluid deformation within 

a convecting cell is characterized by a surface plate mov- 
ing with velocity vp and a return flow governed by the 
free-slip condition at the core-mantle boundary. The 
resulting viscous flow produces shear stresses that can 
be determined by analogy to asthenospheric counterflow 
[e.g., Turcotte and Schubert, 1982, pp. 232-236]. The 
result is Vxz - 3rlmvp(D-z)/D 2, where •/rn is the man- 
tle viscosity, D is the mantle thickness, and z is depth 
(positive downward). For a cell of length L we use (7) 
to estimate (I)Vm d, the total rate of viscous dissipation in 
the mantle 

(I)Vm d -- 3r/m Vp 2 (A + Cry) (8) 
where (I)• d, as for all subsequent expressions for dissipa- 
tion, is per unit length perpendicular to the direction of 
flow. Here A is the aspect ratio of the convecting cell, 
equal to the greater of LID or D/L. In defining A, we 
recognize that for L < D the dominant flow is similar 
to the one described above but in the vertical direction 

and produced by the downgoing slab (also moving with 
speed vp) and the free-slip boundary associated with the 
return upwelling. In addition, we recognize that to con- 
serve mass, a return circulation must occur near the two 
shorter edges of the cell. The variable parameter Cr• in 
(8) accounts for the additional energy dissipated by this 
circulation and depends on how sharply streamlines of 
the flow are forced to bend at corners. Simple numerical 
tests show that (8) accurately describes viscous dissipa- 
tion that occurs in a box with two boundaries that are 

free-slip and two that move with velocity vp. We also 
find that C,• does not depend on the aspect ratio A. 

The remaining term in (2) gives the rate at which 
body forces do work on the fluid. We refer to this term 
as (I)pe because, for the mantle, it represents the rate 
at which gravitational potential energy is released. The 
net work done by gravity on the hydrostatic component 
of the density field is zero for a closed convecting cell, so 
only the horizontally varying component of the density 
field contributes to (I)pe. For a Boussinesq fluid whose 
density varies with temperature, (I)pe is given by 

(I)Pe -- /V p#C• [Tm - T(vo, 7,)] Vz(VC, 7,)dV (9) 
where Vz is the vertical component of velocity (positive 
downward), T is temperature, Tr• is the mantle interior 
temperature, c• is the thermal expansivity, and g is the 
acceleration due to gravity. For slab driven flow, only 
the descending slab contributes to (9). To perform this 
integral, we must integrate over the temperature pro- 
file of the subducting slab, which changes as the slab 
descends and warms. The heat that warms the slab 

is lost from the neighboring mantle, so the integral of 
the temperature profile along horizontal planes should 
not vary with depth [e.g., Turcotte and Schubert, 1982, 
pp. 176-178]. Thus we can simply use the integral of 
the surface temperature profile in estimating (9). This 
profile is that of a cooling boundary layer, generated as 
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the lithosphere travels across Earth's surface, and can 
be represented as an error function [e.g., Turcotte and 
Schubert, 1982, pp. 163-167]: 

= zxr (:/h,) + (10) 

where Ts is the temperature at the surface, AT = 
T,•- T, is the temperature difference between the man- 
tle and the surface, and h, is the thickness of subducting 
lithosphere, defined here in terms of the time tc during 
which the boundary layer has cooled: 

h, - 2x/• - 2v/nL/v p (11) 

where n is the thermal diffusivity. Then the total rate 
of potential energy release provided by the slab is, in 
two dimensions 

/0 (I)pe-- pgc•ATvzls erfc z dz- pgc•ATvplshs 
(12) 

where l• is the length of the subducted portion of the 
slab and we have assumed that the slab velocity is the 
same as the surface plate velocity vp. 

The energy balance given by (2) is then simply a bal- 
ance between viscous dissipation and potential energy 
release, and can be simplified to (I)Vm d - (I) pe. Equating 

'these terms using (8) and (12) yields an expression for 
the plate velocity: 

pgc•ATh•l• 
vp = 3v•.,• (A + CM) (13) 

Combining (13) and (11), setting l, = D and L > D, 
and solving for vp yields 

(4•L)l/a( )2/a (•)-2/a pgc•ATD 
- + C.• 

(14) 
This expression for velocity is a variation of a similar ex- 
pression given by standard boundary layer theory [Tur- 
cotte and Schubert, 1982, p. 282]. The differences arise 
in our estimate of the viscous dissipation in (8), where 
we assume that the boundary condition at the mantle's 
base is free slip and that a slab's velocity is equal to 
that of its attached surface plate. For a more compli- 
cated system with a strong lithosphere that subducts, 
the added viscous dissipation in the subduction zone 
should serve to slow the plate by adding terms to the 
denominator of (13). To determine the influence of the 
subduction zone, we have developed a finite element 
model of a convecting system that specifically includes 
a subduction zone. 

3. Finite Element Model 

Various numerical parameterizations of a subduction 
zone have been used to study a variety of problems. 
These are generally either local studies designed to in- 
vestigate the dynamics of the subduction zone itself 
[e.g., Gurnis and Hager, 1988; Houseman and Cub- 

bins, 1997; Melosh and Raefsky, 1980; Toth and Gur- 
his, 1998; Zhang et al., 1985; Zhong and Gurnis, 1994] 
or large-scale studies designed to look at the effect of 
various parameterizations of subduction zones on man- 
tle convection of a global scale [e.g., Bercovici, 1995; 
Bunge and Richards, 1996; Davies, 1989; Hager and 
O'Uonnell, 1981; King and Hager, 1994; King et al., 
1992; Puster et al., 1995; Zhong and Gurnis, 1995a, b]. 
Due to computational constraints, the local studies gen- 
erally have finer spatial resolution than the global mod- 
els and thus can more realistically incorporate some of 
the more detailed structures of a subduction zone. In 

particular, Houseman and Gubbins [1997], Melosh and 
Raefsky [1980], and Zhang et at., [1985] assign a realis- 
tic curved geometry to an isolated subducting plate and 
look at the bending of that plate as it descends. Zhong 
and Gumis [1994] and Zhong et at. [1998] also introduce 
a fault zone into an otherwise regular grid in an effort 
to parameterize the interaction between subducting and 
overriding plates. Finally, Toth and Gurnis [1998] allow 
a fault zone's geometry to evolve in response to dynam- 
ical forces associated with the initiation of subduction. 

Detailed local models of subduction zones demand 

fine numerical resolution and complex grid geometry, 
so it is difficult to incorporate these models into larger- 
scale global models. To get around this problem, the 
detailed structure of the subduction zone is generally 
parameterized in a simple way in an effort to mimic its 
effects on mantle flow. Several methods have been used. 

One is to impose piecewise continuous velocity bound- 
ary conditions at the surface to force plate-like behavior 
[e.g., Hager and O'Uonnell, 1981; Davies, 1988; Bunge 
and Richards, 1996]. Another approach is to •mplement 
plates by combining strongly temperature-dependent 
viscosity with low-viscosity weak zones that represent 
plate boundaries [e.g., Davies, 1989; Gurnis and Hager, 
1988; King and Hager, 1990; Puster et al., 1995]. Both 
approaches, while indeed allowing the plates to move 
in a plate-like fashion, do not take into account the de- 
tailed structure of the subduction zone and its dynam- 
ics. A few studies include a fault zone that can sup- 
port shear stresses and allow differential displacements 
across its width [e.g., Toth and Gurnis, 1998; Zhong 
and Gumis, 1994, 1995a, b; Zhong et al., 1998]. This 
fault zone parameterizes the interaction between the 
subducting and overriding plates and allows for more 
realistic subduction geometry, in that one plate over- 
rides another and the entire thermal buoyancy of the 
subducting plate is incorporated into driving convec- 
tion. These studies, however, do not specifically treat 
the deformation within the lithosphere as it subducts. 
This deformation may be important in resisting plate 
motions, so a more complete analysis of a subduction 
zone's effect on mantle flow is needed. 

In this study we incorporate the important features 
of local subduction models in a larger-scale convecting 
system. In particular, we include a smoothly bending 
subducting slab and an adjacent fault zone in a viscous 
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model of a single convection cell. Both are modeled as 
viscous fluids in a finite element calculation using Con- 
Man, a finite element code that solves the coupled ther- 
mal diffusion and incompressible Navier-Stokes equa- 
tions for both Newtonian and non-Newtonian rheology 
[King et al., 1990]. The finite element grid we used in- 
cludes a lithosphere, mantle, and viscous fault zone, as 
shown in Figure 1. Its length L is 1500 kin, and its 
depth D is 1200 km. 

An accurate representation of deformation in the sub- 
ducting slab is facilitated in the design of our finite ele- 
ment grid. The curved surface of the slab is parallel to 
the direction of its descent into the mantle, allowing it 
to flow into the mantle in a smooth, continuous fashion, 
as real slabs do in Earth. A rectangular grid of com- 
parable resolution, which could have been more easily 
implemented, would not allow this type of slab behav- 
ior because the slab edges would consist of corners in 
the grid, which would alter its flow. The surface of the 
slab is drawn so that the vertical component of the slab 
velocity at each point increases as the error function of 
the arc length around the slab, as described by Melosh 
and Raefsky [1980]. We use a slab dip angle of 90 ø and a 
radius of curvature R of 240 kin. This surface describes 

the curved upper surface of the subducting slab. The 
rest of the grid, which represents both the lithosphere 
and mantle, is filled in below this surface as shown in 

Figure 1 and is assigned a temperature-dependent man- 
tle viscosity •7r•- Free-slip is imposed along all horizon- 
tal and vertical surfaces, and all corners are pinned. 

The interaction between the subducting and over- 
riding plates is parameterized by a viscous fault zone 
one element wide, bounded above by an overriding arc- 
wedge region whose lower boundary is pinned (Fig- 
ure 1). We use a fault zone of length l! = 782 km 
and width w! = 10.7 km and assign a temperature- 
independent viscosity •, which allows the fault to sup- 
port shear stress. The shear strain rate across the fault 
zone is given by i! - E vv/w.t , so the shear stress within 
the fault zone r! is given by 

Vp 
r! - 2•!•! - •!• (15) 

w! 

The strength of a viscous fault zone, represented by the 
stress it can support, is thus a function of both the 
imposed viscosity and the velocity of the subducting 
plate. Real fault zones are not, of course, composed 
of viscous fluids but of rocks that can support some 
degree of frictional shear stress. Our viscous fault zone 
supports shear stresses between the subducting plate 
and the overriding wedge and thus models this essential 
aspect of a real fault zone. 

The overriding wedge region (Figure 1) is also a vis- 
cous fluid with a viscosity 100 times that of the mantle, 

-lOO 

-30O 

-400 

Figure 1. The finite element grid used. Shown in expanded detail is the gridding of the 
subduction zone. This region is highlighted on a schematic of the full finite element grid (inset). 
The portion of the grid that is not detailed here has a regular geometry and allows a return 
circulation to the subducting region. The shaded regions represent, from lower left to upper 
right, the mantle, subducting lithosphere, fault zone, and overriding arc-wedge region. The 
lithosphere is differentiated from the mantle by temperature alone. Flow boundary conditions 
are free slip along all grid edges. The large dots represent nodes that are pinned to zero velocity 
Distances shown are in kilometers. 
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but it does not participate in the main convective flow. 
Instead, free-slip boundary conditions along the grid 
edges allow a small circulation of material between the 
fault zone and the wedge. This circulation is minor and 
does not affect the dynamics of the subducting plate 
system, as demonstrated below. 

We assign an error function temperature profile to the 
oceanic lithosphere as given by (10), using T• = 273 K, 
AT = 1200øC, n = I mm 2 s-•, and a preimposed cool- 
ing time to. Initially, this temperature profile is imposed 
across the entire surface of the grid. Velocity boundary 
conditions along the surface of the oceanic plate are 
used to advect this temperature profile into the man- 
tle, where thermal diffusion allows some warming of the 
slab as it descends. Because the finite element grid is 
not long enough for significant thickening of the ther- 
mal boundary layer to occur as it traverses the box, 
the imposed cooling time tc dictates the approximate 
thickness of the slab, as in (11). 

The oceanic lithosphere's cold temperatures are re- 
sponsible for its increased strength relative to the man- 
tle. Temperature-dependent viscosity r/(T) is generally 
given for dislocation flow as [e.g., Kohlstcdt et el., 1995] 

r/(T) - r/r• exp RT RTr• (16) 
where R: 8.31 J mol -• K -• is the universal gas con- 
stant, Ea is the activation energy, and mantle temper- 
ature Tr• yields mantle viscosity r/r• [King, 1991]. This 
viscosity law is only applied to the lithosphere and man- 
tle, and a maximum viscosity of 104r/m is enforced. Al- 
though the above viscosity law does not account for 
the variety of deformation mechanisms that may oc- 
cur in the subducting lithosphere, we account for the 
strengthening or weakening effects of these mechanisms 
by allowing Ea to vary. Thus (16) can be thought of as 
defining the effective viscosity of the lithosphere. 

Once the velocity boundary conditions have advected 
the temperature field to depth, they are replaced by 
free-slip boundary conditions. The temperature field 
then provides negative buoyancy with which the slab 
can drive mantle flow. This is achieved by making the 
Boussinesq approximation and by imposing a nonzero 
coefficient of thermal expansion, c•, everywhere except 
for the overriding wedge. We allow the dense slab 
to drive convection until a thermally consistent steady 
state model of mantle flow is achieved. In other words, 
the plate descends under its own weight with a con- 
stant velocity vp, and the thermal buoyancy of the plate 
is determined by the descent of a slab with this same 
velocity. We calculate this steady state solution using 
a fault zone viscosity of r/,•/100 and an activation en- 
ergy of Ea = 100 kJ tool -•. The latter value is smaller 
than is generally found for olivine in laboratory experi- 
ments, but Christensen [1984] shows that the effects of 
stress-dependent viscosity can be approximated in cal- 
culations with Newtonian viscosity by decreasing E•. 

In any case, this steady state solution is used only as a 
starting point for the models described below in which 
we allow r/f and Ea to vary. 

It is potentially difficult to force strong lithosphere 
into or away from the corners of the finite element grid. 
To prevent this difficulty, we apply temperature bound- 
ary conditions to prevent high-viscosity material from 
nearing the corners (Figure 1, inset). When the slab 
descends deeper than 800 km depth, its temperature 
is set to Try, thus eliminating its strength and thermal 
buoyancy below this depth. Similarly, as the plate pulls 
away from the mantle upwelling opposite the descend- 
ing slab, mantle viscosities are imposed for the first 200 
km of the plate. Buoyancy, however, is still controlled 
by the temperature distribution, which is set .to mimic 
that of a ridge by using (10) and allowing t• to increase 
linearly from zero to its full value at 200 km. In this 
way, we more realistically generate the small pushing 
force derived from the horizontal juxtaposition of buoy- 
ant mantle and dense lithosphere, while still allowing 
the slab to easily pull away from the edge of the grid. 

The importance of the slab and fault zone should de- 
pend on their rheology. To see how they do, we vary the 
strength of the fault zone by changing its viscosity r/f 
and the effective viscosity of the lithosphere by chang- 
ing the activation energy, Ea, associated with tem- 
perature dependence in (16). The steady state buoy- 
ancy field is used to drive flow for one time step to 
test the system's response to each new rheology. We 
record the plate velocity and the total viscous dissipa- 
tion the mantle, lithosphere, fault zone, and overriding 
wedge. The lithosphere is distinguished from the man- 
tle by temperature; elements with average temperatures 
< 0.9AT + T• are considered lithosphere. 

4. Nondimensionalization 

The activation energy E• determines how viscosity 
varies with depth in the lithosphere. To determine how 
the geometry and rheology of the subduction zone affect 
its importance to the convecting system, it is useful to 
estimate an effective viscosity of the entire lithosphere 
for a given activation energy. To do this, we use an aver- 
aging method suggested by Permentier et el. [1976] in 
which viscosity is weighted by the square of the second 
invariant of the strain rate tensor • and then averaged 
over volume' 

0- 
We have performed experiments with both Newtonian 
and strain-rate-dependent rheology and have found that 
_our results, when expressed in terms of this definition of 
effective viscosity, are independent of the type of rhe- 
ology applied. As a result, we can define an effective 
viscosity that is the result of either Newtonian or non- 
Newtonian rheology in a bending lithosphere. In addi- 
tion, it should be possible to account for brittle behavior 
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by applying a highly non-Newtonian (plastic) rheology, 
which approximates the effects of a yield stress. 

We nondimensionalize the lithosphere and fault zone 
viscosities by the mantle viscosity: 

, f/t , f/S (18) rh = 0r• r•S = r/,, 
where overbars indicate effective viscosities calculated 

using (17) and primes indicate dimensionless quanti- 
ties. We note that a typical velocity is given by vpo = 
2i0h, - roh,/fl,,, where i0 is a typical strain rate and 
r0 is a typical stress. Using ro- p#c•ATI,, we nondi- 
mensionalize velocity as 

, vp = 
Because dissipation in the fault zone is related to both 

its length 1S and the shear stress it supports, rS, it is 
useful to express the fault zone strength as the product 
of these quantities, made dimensionless using r0 and h,: 

(rS1S)' = rS1S (20) 
p#aATh,l, 

Combining (15), (18), (19), and (20), we find 

(rS/S)'-- ' ' rlsvpls /ws (21) 

To calculate (rS/s)', we areally average the shear stress 
in the fault zone elements, multiply by /S, and nondi- 

mensionalize this quantity using (20). The result is gen- 
erally larger than values predicted using (21) by roughly 
20%. Runs in which the subducting plate is significantly 
slowed by the lithosphere 's strength yield fault zone 
stresses that are even larger, probably because the stress 
is less accurately represented by the shearing given by 
(15) if vp is small. In any case, the fact that (20) and 
(21) agree as well as they do over orders of magnitude 
change in both fault zone and lithosphere viscosity in- 
dicates that we can accurately represent a fault zone in 
a viscous way. 

5. Finite Element Results 

We have run the finite element code for a range of 
lithosphere and fault zone strengths for plate thick- 
nesses of 57, 100, and 157 km. As a result, we are able 
to determine how the dimensionless plate velocity varies 
with r•, (rS/S)' and h• (Figures 2a 3a, and 4a) In 
the nondimensionalization we assume an effective slab 

length of l• = 700 kin, which ignores any contribution 
from the upper 100 km of the finite element grid. This 
is reasonable because the driving buoyancy of the slab 
is determined by horizontal variations in density, which 
are small near the surface due to the slab's nearly hor- 
izontal orientation there (Figure 1). 

An isoviscous convecting system with an aspect ra- 
tio of A = LID = 1500/1200 = 1.25 should produce 

' - 0.06, as shown by a a dimensionless velocity of vp 
comparison of (13) and (19)if C,• = 2, as we estimate 
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10 

0.3 0 0 
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Figure 2. Results from the finite element model for a plate thickness of h, - 57 km, plotted 
as a function of dimensionless lithosphere viscosity r• given by (18) and the dimensionless fault 
strength (rS1S)' given by (20). Shown are (a) the dimensionless plate velocity v•,, given by (19), 
and the percentage of the total viscous dissipation that occurs in the (b) mantle, (c) lithosphere, 
and (d) fault zone. For comparison, these regions represent 91%, 7%, and 0.5% of the total area 
of the finite element grid. 
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Figure 3. Similar to Figure 2, for a plate thickness h, - 100 km. The mantle, lithosphere, and 
fault zone represent 87%, 11%, and 0.5% of the total area, respectively. 
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Figure 4. Similar to Figure 2, for a plate thickness h, - 157 km. The mantle, lithosphere, and 
fault zone represent 82%, 16%, and 0.5% of the total area, respectively. 
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later. The finite element results show that v;, is less 
than this value for all lithosphere and fault zone vis- 
cosities shown but is close to this isoviscous limit for 

a weak, thin, lithosphere and a weak fault zone (Fig- 
ure 2a). Thus a strong lithosphere or fault zone signifi- 
cantly slows a plate. Thick plates are slowed more than 
thin plates for a given lithosphere viscosity and fault 
strength (compare Figures 2a, 2b, and 2c), especially 
for plates with high lithospheric viscosity. 

To show that it is indeed the bending of the slab and 
the shearing of the fault zone that act in slowing the 
plate, we plot the percentage of the total viscous dis- 
sipation that occurs in each of the mantle (Figures 2b, 
3b, and 4b), lithosphere (Figures 2c, 3c, and 4c), and 
fault zone (Figures 2d, 3d, and 4d) as a function of di- 
mensionless lithosphere viscosity and fault strength for 
each of the three plate thicknesses studied. The frac- 
tion of the viscous dissipation that occurs in the wedge 
region is everywhere less than ( 0.5% of the total and 
thus is insignificant. Included in the figure captions is 
the fraction of the total area of the finite element grid 
each region represents. In every case, the fraction of the 
viscous dissipation that occurs in the mantle is smaller 
than its areal fraction. Instead, the lithosphere or fault 
zone dissipate more than their share of the total. 

In general, as the fault zone strength increases, the 
plate velocity decreases and the proportion of dissipa- 
tion in the fault zone increases, indicating that an in- 
creased resistance in the fault zone slows the plate. We 
also observe the same general trend of decreased plate 
velocities and increased dissipation in the lithosphere 
as either the thickness or viscosity of the lithosphere 
increases. The fraction of dissipation in the lithosphere 
increases with decreasing lithosphere strength, however, 
if the fault zone is strong but the lithosphere is weak. 
This is because a strong fault zone acts to pin the sur- 
face of the slab to the overriding wedge. If the slab is 
itself weak, significant shearing is permitted within the 
slab, causing viscous dissipation in the slab to increase. 
This motion, however, is not plate-like because the fault 
zone does not accommodate motion of the subducting 
plate past the overriding wedge. The fault zone, by 
definition, must be weaker than the subducting plate. 

6. Theoretical Prediction of Plate 

Velocity 

The finite element results show that the plate ve- 
locity decreases significantly from its expected isovis- 
cous value when a strong lithosphere or fault zone are 
present. Because the expression for the plate velocity 
(13) arises from a balance between viscous dissipation 
and potential energy release, it is clear that the expres- 
sion for this balance becomes incorrect as we increase 

the strength of the lithosphere or fault zone. The ex- 
pression for potential energy release (12) should not be 
altered by this change, but the expression for viscous 
dissipation should include the dissipation that occurs 

in the fault zone and the lithosphere. We attempt to 
combine the viscous dissipation in these regions with 
that of the mantle in (8) to obtain an expression for ve- 
locity similar to (13). To do this, we first characterize 
fault zone and lithosphere dissipation. 

6.1. Fault Zone Dissipation 

The pattern of viscous dissipation in the fault zone is 
shown by Figure 5 for a strong fault zone with an inter- 
mediate lithosphere viscosity. It is clear that the largest 
rate of viscous dissipation is found within the elements 
of the fault zone and is typically between 50 and 100 
times the mean value for the entire finite element grid. 
For a plate velocity of vp - 10 cm yr -1 and the man- 
tle parameters given later, we estimate, using (12), an 
average potential energy release of 1.7 x 10 -s W m -3 
for a convecting cell. Assuming a specific heat of 
Cp - 1100 J kg-1 K-1 the concentration of this heat- 
ing by a factor of 100 within the fault zone should cause 
temperatures there to increase by 75øC in the 5 Myr it 
takes for a subducting material to pass through 500 km 
of subduction zone. This heating may weaken the fault 
somewhat but should be primarily carried away by ther- 
mal diffusion into the adjacent cold slab. 

We have shown that the decrease in velocity from vp 
to zero across the fault zone of width w! and area lf w! 
generates a shear stress •'! given by (15). If •'! is nearly 
uniform along the fault's length, the dissipation in the 

fault zone (I)• d can be expressed using (7)' 

(I)• d - •'•vpl! (22) 
Neither the width of the fault zone w! nor its viscosity, 
•7f, are used in this estimation of dissipation. Faults in 
real subduction zones are not viscous but may exhibit 
brittle or plastic rheology and thus should support some 
degree of shear stress over some length, so we can still 
estimate their contribution to the total viscous dissipa- 
tion using (22). 

6.2. Lithosphere Dissipation 

The lithosphere exhibits a more complicated pattern 
of dissipation than does the fault zone, as is shown in 
Figure 6 for a strong lithosphere and a weak fault zone. 
There appear to be four primary regions of contribution 
to the total dissipation. As the slab begins to subduct, 
one region near the top of the slab exhibits extensional 
stresses along its length, while another region below it is 
under horizontal compression. This pattern is reversed 
as the slab exits the curved part of the subducting slab. 
These stresses are similar to fiber stresses in a bend- 

ing elastic plate, as described by Turcotte and Schubert 
[1982, pp. 112-115]. As the slab begins to descend, it 
must deform into a bent shape, which forces the surface 
of the slab to expand while its base contracts. As the 
slab continues to descend, it must unbend from a curved 
shape into a straight one. The recovery of this straight- 
ened shape requires undoing the inelastic deformation 
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that originally bent the slab. Thus the top surface of the 
slab contracts while the bottom surface expands. This 
stress pattern matches the one observed in Figure 6 and 
generates an amplification of viscous heating by up to a 
factor of 100 (Figure 6). If we assume that the average 
heating of slab material as it travels through the sub- 
duction zone is half of this, we expect the slab to only 
warm by 35øC, which should not' significantly affect its 
material strength. 

We estimate the dissipation associated with the ob- 
served stress pattern by analyzing the bending and un- 
bending deformation. It can be shown using similar tri- 
angles [ Turcotte and Schubert, 1982, pp. 114-115] that 
the horizontal strain exx associated with bending is 

AI• y 
ex•= l• = • (23) 

where AI• is the change in length l• of a fiber in the 
curved part of the slab, y is the distance from the cen- 
terline of the slab, and R is the radius of curvature with 
which the bending occurs. We can obtain a strain rate 
by dividing by a typical timescale for bending. In this 
case, l•/vp is an appropriate timescale because the slab 
is being strained as it is being pulled through the curved 
part of the subduction zone. However, l• is proportional 
to R, so we can approximate the strain rate as 

ß Vp y (24) 

Combining (7) and (24), the viscous dissipation in the 
lithosphere, (I)[ d, is 

/h•12 Vp y 2 (I)•d • lcri' .•-h•/2 (•) dy (25) 
Performing this integral and using the fact that l• is 
proportional to R, we find 

(I)[ d -- ClVp2 •]l (26) 

where we have introduced the constant Ct in which we 
incorporate all constants of proportionality and integra- 
tion that arise in the derivation. Thus we find that the 

lithospheric dissipation depends on the cube of the ratio 
of the thickness of the slab to its radius of curvature. 

6.3. Expression for Plate Velocity 

The sum of the dissipation rates for each of the man- 
tle, fault zone, and lithosphere yields the total dissipa- 
tion in the convecting system, which should equal its 
rate of potential energy release, as shown by (2). Thus 

(I) pe -- (I)Vm d -{- (I)y d -+- (I)[ d (27) 
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Figure 6. Similar to Figure 5, for h• - 100 km and viscous parameters that yield a relatively 
strong lithosphere and a relatively weak fault zone. Here, r/• - 3500, (rflf)' - 1.8 x 10 -5, and 
v• - 0.0021. The percentages of the total viscous dissipation in the mantle, lithosphere, and 
fault zone are 7%, 93%, and 0.003%. 

Combining (8), (12), (22), and (26) and solving for the 
plate velocity, we find 

C•pgaATl•h• - 
= 

3rbn (A q- Crn) q- Ctrlt (hs/R) 3 

where we assign Cs = 1/x/• and introduce the con- 
stant C'y, which should be close to unity, to account for 
possible inconsistencies between the theory used to de- 
rive (28) and the finite element results. If we apply the 
nondimensionalizations we have previously developed in 
(18), (19), and (20) to (28), we find 

, c, - c; 
vp = (29) 

3 (A + C,•) + Ctr!• (h,/R) a 

We compare the dimensionless velocity observed in 
the finite element results (Figures 2a, 3a, and 4a) to 
the velocities predicted by (29) in Figure 7. This com- 
parison requires us to estimate the constants 
and C'i. To do this, we look first at the velocity curve 
for hs - 157 km, log• > 2, and (tflx) •- 0.005 (Fig- 
ure 7a). In this region, lithosphere dissipation largely 
determines the velocity, as seen in (29) where the sec- 
ond term in the denominator dominates. We find that 

Ct = 2.5 gives a good match for this portion of the 
line when C,• and Cy are unity. We next determine 
C,• by approximately matching this same curve near 
log r/; = 0.5, where the mantle dissipation is most im- 
portaIit, and find that C,• = 2.5 gives a good match. 

Finally, we determine C'i by matching the curves for 
(rill) t- 0.3 (Figure 7d) where the fault zone is most 
important, finding C'i: 1.2. 

The results shown in Figure 7 show that both the 
h• - 100 km and h• - 157 km curves are well matched 
between the finite element results and theory. This 
match is impressive given that it occurs over orders of 
magnitude variations in the dimensionless lithosphere 
viscosity and fault zone strength, where the importance 
of each ranges from negligible to governing. The third 
set of curves, hs: 57 km, shows finite element veloci- 
ties that are consistently larger than predicted, but the 
match is not unreasonable, and the predictive power of 
(29) does not appear significantly diminished. One ex- 
planation for the discrepancy could be that the thinner 
slab has a longer effective slab length l, because more 
of the curved part of the slab can participate in pulling 
the slab downward. The result of increasing l, is most 
easily seen by first redimensionalizing both the observed 
and predicted curves using the previous value of l, that 
we used to nondimensionalize them. This yields the di- 
mensional values of the observed plate velocity, to be 
matched by (28). Using a larger value of l, in (28) 
increases the predicted value of vp by increasing the 
driving buoyancy of the plate. Thus assuming a larger 
value of l, for the h, - 57 km curves should bring their 
observed and predicted velocities closer together. This 
effect will be more pronounced for a strong fault zone 
because the numerator of (28) is smaller so a constant 
increase in the driving buoyancy should cause a propor- 
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Figure 7. A comparison of the dimensionless velocity v•o obtained from the finite element 
calculations (thick lines) to the velocity predicted by theory (thin lines) using (29). Velocity 
is nondimensionalized using (19) and is plotted as a function of the log of the dimensionless 
lithosphere viscosity r/• for four different dimensionless fault zone strengths (rflf) • and for plate 
thicknesses of hs = 57, 100, and 157 km (solid, dashed, and dotted lines). We use Cm -- 2.5, 
C! = 1.2, and Ct: 2.5 in (29), which are estimated as described in the text. 

tionally larger increase in velocity. This could explain 
the larger discrepancy for the thin plate in Figure 7d. 

Theory predicts that C! should be unity, but it is 
larger by 20%. One explanation for this discrepancy 
could be that (22) underestimates fault zone dissipa- 
tion by 20%, requiring a corresponding increase in C! 
to yield the correct dissipation. Another possibility is 
again a change in the length of the slab, ls. Decreasing 
the slab length by, say, a factor of 1.2 would cause a 
decrease in the first term in the numerator of (28). To 
prevent a decrease in plate velocity, we could decrease 
C! and C1 by the same factor and Cr, by a different fac- 
tor that depends on A. This would approximately yield 
C! = 1, as predicted by theory, and Cr, = Cl = 2. This 
group of constants, combined with the new shorter slab 
length, causes the lines in Figure 7 to match as well 
as they currently do, only at larger dimensionless ve- 
locities because they are nondimensionalized with the 
shorter slab length (19). This seems a likely explana- 
tion because it involves changing the effective length 
of the slab, a quantity that is difficult to estimate and 
may also be responsible for the discrepancies seen for 
thinner plates. Thus we proceed using C! = i and 
Cm ---- C1-- 2. 

7. Comparison to Observed Plate 
Velocities 

Plates that are attached to subducting slabs move 
faster than those that are not [e.g., Forsyth and Uyeda, 
1975; Gripp and Gordon, 1990]. The difference is strik- 
ing; plates with an attached slab move with velocities 
between 6 and 9 cm yr -• while those without gener- 
ally move slower than 2 cm yr -• when velocities are 
measured relative to the hotspot reference frame [e.g., 
Forsyth and Uyeda, 1975; Gordon and Jurdy, 1986]. 
The more rapid motion of slab-bearing plates is thought 
to indicate that the pull of slabs plays a dominant role 
in propelling the plates [e.g., Gripp and Gordon, 1990]. 

Earth's slab-bearing plates exhibit a wide range of 
horizontal length scales, as shown in Table 1, where 
two estimates of the plate length L are given. If a plate 
moves with constant velocity and does not change in 
size, the plate length is given by L = As vp, where As 
is the age of the plate as it begins to subduct. Because 
As varies along the horizontal length of the subduc- 
tion zone, the ages presented in Table i are averages 
determined by taking the length-weighted average of 
slab ages given by Jarrard [1986]. For the Pacific plate, 
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Table 1. Subducting Plate Data 

Plate Velocity•vp, cm/yr Subducting AgebA•, Ma Plate Length, km 

L = Asvp, L = x/Plate Area • 

Cocos 8.6 17 
Indian 6.1 105 

Juan de Fuca b 3.4 8 
Nazca 7.6 51 
Pacific 

Total 8.0 104 

South 8.0 94 

Japan 8.0 128 
Alaska 8.0 47 

Philippine 6.4 37 

1500 1700 

6400 7700 

30O 

3900 3900 

8300 10400 

8000 10400 

10240 10400 

3800 10400 

2400 2300 

•From Forsyth and Uyeda [1975]. 
bFrom Jarrard [1986]. 

three separate subducting regions are given, as well as 
their average. Another approximation to the horizontal 
length scale of the plate is the square root of the area 
of the plate. It is apparent from Table 1 that both ap- 
proximations for L are about the same for each plate 
and that Earth's plates exhibit about an order of mag- 
nitude variation in plate length, from 1500 km for the 
Cocos plate to 10,000 km for the Pacific plate. The ve- 
locities associated with these plates, however, are not 
correlated to these length scales (Table 1). All slab- 
bearing plates, with the exception of the small Juan 
de Fuca plate, move with absolute velocities between 
6 and 9 cm yr- x This consistency of plate velocities is 
supported by the past history of plate motions. Gordon 
and Jurdy [1986] show that nearly all oceanic plates 
have moved with velocities between 5 and 9 cm yr -x 
throughout the Cenozoic. Some exceptions include the 
Kula, Farallon, and Indian plates, which achieved ve- 
locities of 11 to 14 cm yr- x in the early Cenozoic, and 
the slow Juan de Fuca plate today. 

The lack of a relationship between plate velocity and 
length is somewhat surprising, because if the resistive 
forces of plate tectonics depend on the shearing of the 
underlying mantle, smaller plates should move more 
rapidly than larger ones [e.g., Morgan, 1971]. Thus, 
if the velocity is given by (13), we expect longer plates 
to be slowed. This, of course, assumes that the driving 
force of each plate is the same. We do not expect this 
to be true, because longer plates should have thicker 
slabs, which will drive them faster. The equilibrium 
relationship between velocity and plate length is given 
by (14), which has a flatter dependence on L than does 
(13). This could help explain the lack of variation of vp 
among oceanic plates, but vp in (14) still depends on L. 

By including the energy dissipation of the fault zone 
and lithosphere in the total energy balance of the con- 
vecting cell, a new variation of vp with L should result. 
It is possible that by adjusting the strengths of the litho- 

sphere and fault zone, we can find a new distribution of 
plate velocities that is consistent with the observation 
that vp does not depend on L. To determine the range 
of lithosphere and fault zone strengths in which this oc- 
curs, we first express the plate velocity vp as a function 
of plate thickness h• using a variation of (28) and (29): 

= (30) 
/]rr• 3 (A -•- 2)-•- 2/]• (hs/R) 3 

where we have changed the nondimensionalization of 
fault zone strength by replacing h• by h0 in (20). This 
is done so that the dimensional value of the fault zone 

strength does not change with the plate thickness. We 
let h0 have a constant value of 100 km, but this value 
has no physical meaning, since the dimensional fault 
strength is not dependent on it. We also assume • = 
10 -6 m 2 s -x p 3300kgm -a , - , g - 10ms -2 c• - 
3 x 10-5 K- x AT -- 1200 øC l• -- 1000kin, and 
D - 2500 km. The radius of curvature of the descend- 

ing slab, R, is taken to be 200 km, after estimates by 
Beyis [1986] and Isacks and Barazangi [1977]. Below, 
we determine how plate velocity vp varies with plate 
length L for various choices of the fault zone and litho- 
sphere strengths (•-!l!)' and •/[. Because value of the 
the mantle viscosity •/m is not well constrained, we use 
it as a free parameter that we can adjust to match the 
magnitude of plate velocities to those found on Earth. 

The thickness of a plate as it begins to subduct de- 
pends on its age and hence on its length and velocity 
as in (11). This relationship between plate velocity and 
thickness is shown by solid lines in Figure 8 for plate 
lengths that correspond to those of the Cocos and Pa- 
cific plates (L - 1500 and 10,000 kin). These curves 
are members of a larger family of curves that satisfy 
the thickness-age relationship of (11) for each value of 
L. To determine the velocity of plates of a given length, 
we apply (30). Curves for this expression are also plot- 
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Figure 8. Solutions for the plate velocity vp and thickness h, of plates for two ridge-to-trench 
plate lengths L = 1500 km for the Cocos plate (thin lines) and L = 10,000 km for the Pacific 
plate (thick lines). Solid lines satisfy the thickness-age relationship (11). Dashed and dotted lines 
represent the balance between viscous dissipation and potential energy release given by (30). For 
cases in which the resulting plate thickness is larger than 100 km, we also plot the intersection 
of (30) and h, = 100 km, which represent solutions for plates that cannot grow thicker than 100 
km. For each model of lithosphere and fault zone strength the mantle viscosity r/r• is adjusted to 
yield the Cocos plate velocity of vp = 8.6 cm yr -1 for L = 1500 km. The required values of 
can be estimated from Figure 11a. (a) Curves for a weak lithosphere of r/• - 20. (b) Curves for 
a strong lithosphere of r/[ - 200. In both Figures 8a and 8b, the dotted and dashed lines show 
(rflf) / = 0 and 0.15 for a strong and weak fault zone, respectively. 

ted in Figure 8 for four models of r/J and (r•lj,)' and 
for the two values of L. The intersections of these two 

sets of curves are denoted by circles in Figure 8 and 
give the velocity and thickness of a plate for each of the 
four models and for the two plate lengths L. For each 
model of subduction zone strength we have chosen r/.• 
in (30)such that the Cocos plate curves (L = 1500 km, 
thin lines) intersect to give the actual Cocos plate veloc- 
ity of 8.6 cm yr -1. We then calculate, for each model, 
the velocity and thickness solutions for the Pacific plate 
(L - 10,000 km, thick lines) using the same viscosity 
we used for the Cocos plate. We can evaluate each 
model of subduction zone strength by its ability to pre- 
dict the Pacific plate velocity (8 cm yr-1). 

For a strong lithosphere, solutions only exist for the 
Pacific plate in the limit that the lithosphere grows 
very thick and velocities approach zero (observe that 
the thick curved solid line never crosses the dotted and 

dashed lines in Figure 8b). In fact, if r/• is large, both 
(30) and (11) have velocities that vary as 1/h• 2 for large 
h,, meaning that solutions only exist for vp = 0. To 
obtain nonzero plate velocities and still allow strong 
plates, we must place a limit on the thickness of the 
lithosphere. This is perhaps not unrealistic because at 
some point a growing boundary layer must become un- 
stable and cease to thicken [e.g., Howard, 1964; Jau- 
part and Parsons, 1985]. We thus disallow thickening 
beyond an age of 80 Ma, the point at which the linear 
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relationship between seafloor depth and the square root 
of its age is observed to break down [e.g., Parsons and 
$clater, 1977]. There is some controversy over whether 
this observation is real and over the physical mechanism 
by which it occurs if it is, but we will assume that this 
breakdown is accompanied by a corresponding cessa- 
tion of plate thickening at 100 km, the thickness given 
by (11) for 80 Ma. Thus, if solutions to (11) and (30) 
require plate thickness > 100 km, we allow solutions for 
both the thick plate and for hs - 100 km in Figure 8. 

The four models of lithosphere and fault strength pro- 
duce different variations of velocity with plate thickness, 
as shown by the dashed and dotted curves in Figure 8. 
If the fault zone is weak (dotted lines), the velocity vari- 
ation with hs depends on the two denominator terms of 
(30). For small h, the bending term is small, so the 
constant mantle term dominates, causing (30) to in- 
crease approximately linearly with h, as the buoyancy 
increases. As h• increases, the lithosphere term begins 
to dominate, and the curve for (30) bends over and de- 
creases as 1/h• for large h,. The thickness at which the 
lithosphere term begins to become important depends 

on the dimensionless lithosphere viscosity r/•. The effect 
of increasing the fault zone strength is to decrease the 
numerator of (30), causing zero velocity at a nonzero 
thickness and approximately shifting the curves for (30) 
to the right. As a result, the Pacific plate curves inter- 
sect the thickness-age relationship at different velocities 
for different combinations of fault zone and lithosphere 
strength (thick lines, Figure 8). Only two of the four 
models produce realistic plate velocities for both the 
Cocos and Pacific plates. If the lithosphere is weak 
(Figure 8a), the fault zone must also be weak (dotted 
line) or Pacific plate velocities are too large. If the 
lithosphere is strong (Figure 8b), nonzero plate veloci- 
ties are only obtained if the maximum plate thickness 
of h, - 100 km is enforced. In this case, realistic veloc- 
ities of ,• 8 cm yr -x are only obtained for the Pacific 
plate if the fault zone is also strong (dashed line). 

The parameter space of dimensionless lithosphere and 
fault zone strength is more fully explored in Figure 9, 
where solutions for plate velocity are plotted as a func- 
tion of plate length L. For each subduction model of 
lithosphere and fault zone strength, two solutions are 
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Figure 9. Plots of plate velocity vp as a function of plate length L that represent solutions 
to (11) and (30) such as those shown in Figure 8. For each curve the mantle viscosity r/,• is 
adjusted so that the curve gives a solution that fits the Cocos plate, where vp - 8.6 cm yr- x and 
L - 1500 km (denoted by a star). Two curves are given for each model, one in which a maximum 
plate thickness of 100 km is enforced and one in which it is not. The branching of the two models 
is denoted by a dot, with the smoother line representing the thick plate curve. Sixteen models 
are presented, showing fault strengths (r/l/)' of (a) 0.0, (b) 0.05, (c) 0.1, and (d) 0.15. Dotted, 
dash-dotted, dashed, and solid curves represent r/[ values of 20, 60, 200, and 600, respectively. 
The mantle viscosities associated with each model can be estimated from Figure 11a. 
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given: one for which a maximum thickness of 100 km 
is enforced and one for which hs > 100 km is permit- 
ted. As before, the one remaining free parameter, the 
mantle viscosity r/m, is adjusted for each model so that 
plates of length L = 1500 km have velocities equal to 
8.6 cm yr -•, the set of values appropriate for the Co- 
cos plate. We can now test a given model's validity by 
seeing if it gives realistic plate velocities for all values 
of L between the Cocos and Pacific plate lengths. It is 
clear that for all but the weakest lithosphere strengths, 
we must restrict the plate thickness to 100 km in or- 
der to get reasonable plate velocities at large L. For 
weak fault zones of (rflf)' = 0.0 (Figure 9a), a di- 
mensionless lithosphere viscosity near r/• - 60 yields 
a variation of velocity with L that is confined to the 
observed range of 5 to 9 cm yr -1. Greater values of 
r/• give velocities that are too small for large L, while 
smaller values yield velocities that are too large. As ob- 
served in Figure 8, larger fault zone strength requires 
greater dimensionless lithosphere viscosity. For exam- 

pie, if (tflx)' = 0.15 (Figure 9d), a lithosphere viscos- 
ity between about r• - 200 and r• - 600 seems to 
produce a good range of plate velocities. Intermediate 
fault zone strengths require intermediate dimensionless 
lithosphere strengths, as shown in Figures 9b and 9c. 
Thus we can obtain a reasonable set of plate velocities 
for all fault strengths (r•l•)' between 0.0 and 0.15 but 
only for specific values of the lithospheric strength 
that increase with fault strength. 

The portion of the parameter space defined by the 
dimensionless lithosphere and fault zone strengths that 
yields Earth-like plate velocities for all plate lengths is 
highlighted in Figure 10. This region is defined such 
that all plates of lengths between 1500 and 10,000 km 
(representing the Cocos and Pacific plates) have ve- 
locities between 4 and 11 cm yr -1, a more liberal con- 
straint than the one Earth places on the range of plate 
velocities. The band of models that produce acceptable 
plate velocities runs through values of (r•l•)' between 
0.0 and about 0.2. As observed in Figure 9, strong 

Pacific Plate: L=10000 km 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00 

Mantle Dissipation (%) 
i i ! • • 

Fault Zone Dissipation 

' 
ß 

• •0 ...... ""•'":•:• ' :•• ...... 

•:•.....,...::....,.:• •:. 

Cocos Plate: L=1500 Ion 

0.25 

0.20 

0.15 

0.10 

0.05 

60 

70 .g 

e) 

,60 

•0 

.70 

30 

i 10 

0.00 . 
0.5 1 1.5 2 2.5 3 3.5 4 0.5 1 1.5 4 0.5 1 

log Tll' 

..-,•: ;..........-.:...• .•:3,..: • 
................... 

•:.r.r.:12:2::.?.l.'.l).';l.?l.'•f,.'.,.',.'.'.•,.'. 

ß 

:;...-...-:•.?.-•.:......-:.-..::.-...-..::.-:::,..•;...-:.-.. .... 

......... •:. ?..-.:..:?..- ........ 

2 2.5 3 3.5 

log rll' 

Lithosphere Dissipation (%) 

.•i:i r•.-•,•-• •...•.•.••-. 

10 .•;:•:•. "•x:•i'•:• :•' 90 

1.5 2 2.5 3 3.5 4 

log 

Figure 10. Model results that yield the Cocos plate velocity vp - 8.6 Pa s for the Cocos plate 
length L - 1500 km for the solution of (11), (30), and h• _< 100 kin, plotted as a function of both 
lithosphere strength r/• and fault zone strength (ryly)'. The shaded region represents the portion 
of parameter space that produces a "realistic" distribution of plate velocities, defined such that 
plate velocities fall between 4 and 11 cm yr -1 for all values of L between 1500 and 10000 km. 
To the upper left of the shaded region, maximum velocities are > 11 cm yr-•; to its lower right, 
minimum velocities are < 4 cm yr -•. The percentage of viscous dissipation that occurs in the 
(a) mantle, (b) fault zone, and (c) lithosphere are shown for a plate length of L - 10,000 kin, 
corresponding to the Pacific plate. (d), (e), and (f) show these percentages for a plate of length 
L- 1500 km, corresponding to the Cocos plate. 
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fault zones for which (rflf)' > 0.15 require the litho- 
sphere viscosity to be > 300 times that of the mantle 
to produce reasonable plate velocities. For weaker fault 
zones, lithosphere viscosities between 50 and 300 times 
•,• are required. 

The fraction of the total viscous dissipation that oc- 
curs in each region of the plate system is also shown in 
Figure 10, for plate lengths of 10,000 km (Pacific plate) 
and 1500 km (Cocos plate). For both the Pacific and 
Cocos plates the viscous dissipation in the lithosphere 
remains approximately constant throughout the shaded 
region. For the Pacific plate the lithosphere dissipates 
between 50 and 70% of the total potential energy (Fig- 
ure 10c). This value is larger than the corresponding 
15 to 30% for the Cocos plate (Figure 10f) because the 
Pacific plate bends into the mantle with the maximum 
thickness of hs = 100 km, which generates more dissi- 
pation. For the Cocos plate the decrease in lithosphere 
dissipation is accompanied by an increase in dissipation 
in both the fault zone and the mantle. 

The correlation between the highlighted region of 
reasonable plate velocities and contours of lithosphere 
importance (Figures 10c and 10f) is a consequence 
of the two sharing the same pattern in dimensionless 
lithosphere-fault zone strength space. The fact that 
they do has a consequence for the dimensional value of 
lithosphere viscosity predicted by our models. The per- 
centage of lithosphere dissipation is given by the ratio of 
(26) to (12). The result is proportional to vp, h•, •t, and 
other parameters that are constant between models. 
Because the fraction of lithospheric dissipation is ap- 
proximately constant in the region of reasonable veloci- 
ties, the product of these three terms must be constant. 
We have defined vp to be constant, and for large L, hs is 

a constant 100 km. Thus ?t should be constant among 
the acceptable models. This is shown in Figure 11b, in 
which the contours of dimensional lithosphere viscosity 
approximately follow the shaded region of realistic ve- 
locities. From Figure 11b, we estimate an effective vis- 
cosity for between about 60 and 150 x 102• Pas. Thus, 
as fault zone strength increases, the required increase 
in the dimensionless lithosphere viscosity ?[ is achieved 
through a decrease in mantle viscosity, not an increase 
in lithosphere viscosity. 

The results described above are obtained by adjust- 
ing one free parameter, the mantle viscosity, so that 
each model of lithosphere and fault zone strength yields 
the Cocos plate velocity of vp - 8.6 cm yr -• at L = 
1500 km length. Our results thus depend on our choice 
of the Cocos plate as a "reference" plate and may not be 
representative if the Cocos plate velocity is anomalously 
large or small. If it were greater than the observed 
value of 8.6 cm yr -1, the curves in Figure 9 should be 
shifted upward by a constant factor, making some of 
the large r]• curves "realistic," according to our previous 
definition. Similarly, if the Cocos plate velocity were 
decreased, curves for smaller values of r]• would become 
appropriate. Indeed, tests show that the shaded regions 
in Figures 10 and 11 should be widened if we allow for a 
distribution of velocities for the Cocos plate. Similarly, 
the choice of another reference plate, such as the Nazca 
plate, serves to widen the range of "acceptable" sub- 
duction zone models. These changes, however, are not 
great, and we have already accounted for some of this 
variation by using a liberal range of plate velocities to 
constrain our realistic set of subduction models. Thus 

we continue by drawing conclusions using the results 
shown in Figures 10 and 11 as a guide. 
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8. Application to the Earth's 
Subduction Zones 

Independent estimates of mantle viscosity could be 
used in conjunction with Figure 11a to help constrain 
the strength of the lithosphere and fault zone. Esti- 
mates of mantle viscosity, however, are currently un- 
certain to within an order of magnitude, the range ex- 
pressed in Figure 11a. In addition, because mantle vis- 
cosity varies significantly with depth, it is unclear how 
a mantle viscosity profile should be averaged in order 
to compare it to Figure 11a. In effect, we have de- 
fined the mantle viscosity in (8) as the viscosity that 
is needed to allow (8) to yield the total viscous dissi- 
pation in the mantle, which does not necessarily corre- 
spond to independent estimates derived from geoid or 
postglacial rebound studies. In addition, the viscosity 
estimates in Figure 11a are generated by assuming the 
effective length of the negatively buoyant portion of the 
slab to be l• = 1000 kin. The value of this quantity is 
the subject of some controversy and may be diminished 
if the slab has difficulty penetrating the phase change 
[e.g., Tackley, 1995] or jump in viscosity [e.g, Gurnis 
and Hager, 1988] at 670 km depth. Lithgow-Bertelloni 
and Richards [1995], on the other hand, estimate that 
slabs in the lower mantle contribute .-• 70% of the to- 

tal force needed to drive the plates, suggesting that l• 
should extend deeply into the lower mantle. Our esti- 
mate of l•: 1000 km is intermediate between these two 
extremes, but if it is incorrect, the estimates of mantle 
and lithosphere viscosity (Figures 11a and 11b) should 
be changed in proportion to l•, as shown by (30). 

If the strengths of the lithosphere and the fault zones 
were well known, we could use Figure 10 to determine 
the relative importance of the mantle, lithosphere, and 
fault zone in dissipating convective energy. The effec- 
tive lithosphere viscosity •/t is particularly difficult to 
constrain because it represents an attempt to relate the 
complicated rheological laws of non-Newtonian rheol- 
ogy and brittle failure to simple viscous flow. In addi- 
tion, any errors in our estimate of the radius of curva- 
ture of bending slabs, R, are mapped into •/•. As shown 
by (30), an increase in R can be balanced by a corre- 
sponding increase in •/[ by the cube of the change in R. 
Thus it is difficult to precisely estimate •/t for Earth. Us- 
ing R = 200 km, the range of acceptable lithosphere vis- 
cosities is between 60 and 150 x 102• Pa s (Figure 11b). 
The mantle viscosity required is close to 102• Pa s for 
weak fault zones and smaller for strong fault zones (Fig- 
ure 11a). It is reasonable that significant temperature- 
dependent strengthening occurs in the lithosphere, so 
this range of lithosphere viscosities seems plausible. 

To estimate the strength of the fault zone, we esti- 
mate its length and the shear stress it supports. An 
analysis of the seismicity under Japan [Hasegawa et al., 
1994] reveals low-angle thrust events occurring along 
the upper surface of the plate. If these earthquakes 
represent slip on the plate bounding fault, this fault 

appears to be .-• 200 km long. The stress on such faults 
can be estimated in several ways. Earthquake stress 
drops on plate bounding faults are typically < 10 MPa 
[e.g., Hanks, 1977; Kanamori and Anderson, 1975]. 
This provides a lower bound on the typical fault stress, 
but if earthquakes do not relieve all of the stress on the 
fault, the actual stress could be larger. Hanks [1977] 
speculates that plate-bounding faults support stresses 
of the order of 100 MPa down to .-• 15 km, at which 
point the strength of rocks decreases due to an increase 
in temperature. Hickman [1991] suggests that although 
faults should be capable of supporting such stresses, 
the lack of heat flow anomalies associated with plate- 
bounding strike-slip faults indicates that the stress on 
these faults must be downward of 20 MPa. Molnar and 

England [1990], on the other hand, use heat flow esti- 
mates near major subduction zone thrust faults to esti- 
mate that stresses on these faults must exceed 30 MPa. 

Finally, Zhong and Gurnis [1994] show that trench to- 
pography is best matched in dynamic models of subduc- 
tion zones if major thrust faults support shear stresses 
of 15 to 30 MPa to 100 km depth. 

Average fault stresses of 10 to 100 MPa supported 
over 200 km yield fault strengths between 2000 and 
20,000 MPa km, which, when made dimensionless using 
(20), yields (rflf) • between about 0.017 and 0.17. This 
range gives essentially no constraint on fault strength in 
Figures 10 and 11, but if we assume that faults are weak, 
we need only consider dimensionless fault strengths less 
than about (tflx) • = 0.05. In this case, the dissipation 
in the fault zone must be < 10% of the total for thick 

(Pacific) plates and < 20% for thin (Cocos) plates (Fig- 
ures 10b and 10e). Because the lithosphere dissipation 
is consistently .-• 60% of the total for thick plates and 
20% for thin plates (Figures 10c and 10f), the mantle 
component of dissipation is --• 20- 40% for thick plates 
and 60- 80% for thin plates (Figures 10a and 10d). 

9. Discussion 

To estimate the relative importance of the litho- 
sphere, fault zone, and mantle in resisting convective 
motions, we use an energy balance between the rate 
of viscous dissipation and the rate of potential energy 
release. In doing so, we ignore the effects of heating 
associated with viscous dissipation in both our finite 
element calculations and our analytic theory. This is 
consistent with our assuming an incompressible fluid in 
(5), which eliminates the pressure work term. For a 
compressible fluid, including viscous dissipation mainly 
affects the details of the temperature field and hence the 
details of the distribution of internal buoyancy and po- 
tential energy release. Backus [1975] and Hewitt et al. 
[1975] show that for a compressible fluid the net cooling 
associated with the pressure term globally balances the 
temperature increase due to viscous heating. Thus we 
do not expect an important change in the global rate 
of potential energy release. Viscous heating might have 
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an important effect locally in regions of concentrated 
dissipation such as fault zones and slabs because of the 
temperature dependence of effective viscosity. For fault 
zones, we already use an in situ effective rheology. For 
the slab although the rate of dissipation can be high, 
the time a parcel of material spends in a region of high 
dissipation is short, so its temperature increase is small. 

By balancing viscous dissipation and potential energy 
release, we have defined a range of lithosphere and fault 
zone strengths for which plates move at speeds within 
the range observed on Earth (5-9 cm yr-1). There are 
a few plates, however, that do not move with velocities 
within this range. For one, the small Juan de Fuca plate 
is currently subducting at • 4 cm yr -• (Table 1). In 
fact, our model predicts a slow velocity for short plates 
(Figure 9) because the negative buoyancy of their thin 
subducted slabs is small. Another exception is the slow 
subduction of the North American, South American, 
and Antarctic plates under the Caribbean, Scotia, and 
South American plates [Jarrard, 1986]. The horizontal 
extent of these slabs represents only a small fraction of 
the perimeter of the plate to which they are attached 
[Forsyth and Uyeda, 1975], so we can not expect the 
pull of the subducted slab to be a significant driving 
force for these plates. 

Plate velocities in the early Cenozoic (64-43 Ma) 
were slightly larger than those observed today. An 
examination of individual plate motions shows that 
the increase in plate velocity is significant for the In- 
dian, Kula, and Farallon plates, which traveled close to 
14 cm yr- • in the early Cenozoic [Gordon and Jurdy, 
1986]. Plate reconstructions [Gordon and Jurdy, 1986; 
Lithgow-Bertelloni and Richards, 1998] show that dur- 
ing this time period the Kula and Farallon plates were 
shrinking in size as their ridges moved closer to their 
subduction zones. Our model assumes that the plate 
is in a steady state. In particular, we assume that the 
plate thickness associated with buoyancy is the same as 
that associated with bending, so that the two values of 
hs in the plate velocity equation (28) are the same. For 
a shrinking plate the slab is composed of material that 
subducted with an age older than that of the material 
that is currently subducting. Thus the thickness associ- 
ated with buoyancy in the numerator of (28) should be 
larger than that associated with bending in the denom- 
inator. As a result, a shrinking plate should travel with 
a faster velocity than a plate that is in steady state. 
It is possible that the Kula and Farallon plates were 
propelled at faster rates during the early Cenozoic due 
to the fact that they were shrinking during this time 
period. The Indian plate, however, does not appear 
to change in size while its velocity is near 14 cm yr -1 
[Gordon and Jurdy, 1986]. 

Other mechanisms could be responsible for variations 
in plate velocities. First, transform faults could affect 
a plate's velocity by forcing it to travel in a direction 
parallel to the fault's strike and at an angle to the 
pull of the subduction zone [e.g., Lithgow-Bertelloni and 

Richards, 1998; Zhong et al., 1998]. In addition, R or l• 
could change with time or between plates, yielding vari- 
ations in vp, as shown in (28). Finally, complications 
to mantle convection induced by variations in viscos- 
ity and the presence of phase changes could affect plate 
motions [e.g., Bunge et al., 1996; Hager and O'Connell, 
1979; Tackley, 1995; Van der Hilst et al., 1997; Zhong 
and Gurnis, 1995a]. 

We have shown, however, that the mantle plays an 
important role only for short plates and for long plates 
the lithosphere is dominant (Figure 10). Thus the man- 
tle dynamics may play a secondary role to subduction 
zone dynamics in controlling the patterns and rates of 
mantle convection. This observation could have impor- 
tant implications for Earth's history and future. In an 
isoviscous Earth, plate velocities scale with mantle vis- 
cosity [e.g., Turcotte and Oxburgh, 1967]. Thus a small 
decrease in mantle temperature should cause plate ve- 
locities to slow considerably because mantle viscosity is 
highly temperature dependent. The strength of subduc- 
tion zones, however, should primarily depend on Earth's 
surface temperature, which should remain fairly con- 
stant over most of Earth's history. If subduction zones 
indeed provide a primary resistance to convection in the 
mantle, the independence of their strength from changes 
in mantle temperature could cause plate velocities to be 
stabilized over geologic time, despite lower mantle vis- 
cosity during warmer periods of Earth's history. In the 
future, a cooling Earth should continue to convect in 
the current plate tectonic regime until mantle viscosity 
increases to the point at which it produces more dissi- 
pation than the bending lithosphere. From (28), we see 
that this requires about an order of magnitude increase 
in Om unaccompanied by a similar change in Or. Thus 
one role of strong subduction zones could be to stabilize 
plate tectonic rates over long periods of Earth's history. 

Another parameter that is important in controlling 
plate velocities is the maximum thickness of the oceanic 
lithosphere, which we have taken here to be 100 km. 
If the lithosphere can grow thicker than this, the ad- 
ditional bending stresses, which depend on the cube 
of plate thickness, slow the plate considerably, causing 
the plate to cool and thicken even more. A Pacific-sized 
plate with no thickness restrictions becomes frozen at 
zero plate velocity if its viscosity is • 100 times that 
of the mantle (Figure 9). This could throw the Earth 
into the rigid lid convective regime described by Jaupart 
and Parsons [1985] and $olomatov [1995]. It is interest- 
ing to speculate that the process that limits oceanic 
plate thicknesses on Earth, if it exists, could be the 
process that enables Earth to convect in a plate tec- 
tonic mode instead of a more Venus-like rigid lid mode. 
This process is likely to be affected by the temperature 
difference between the mantle and lithosphere and the 
temperature-dependent properties of the lithosphere, so 
it may depend on mantle temperature. If it does, a 
hotter mantle in the past, or a cooler one in the future, 
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could change the maximum thickness of oceanic litho- 
sphere and thus alter the plate tectonic style of Earth. 

10. Conclusions 

We have shown that the rheology of the lithosphere 
is crucially important in controlling the dynamics of 
convection in the mantle. The strength of fault zones 
and the effective viscosity of the lithosphere, which 
is probably affected by both brittle faulting and non- 
Newtonian viscous flow, are important quantities that 
control Earth's distribution of plate velocities. Thus, 
as anticipated by Jaupart and Parsons [1985] and Solo- 
matov [1995], it is the strength of the upper boundary 
layer to convection in the mantle that determines the 
convective pattern of the mantle. We have found that 
for Earth it is how easily this upper boundary layer 
can bend and slide past neighboring lithosphere as it 
subducts that determines the mantle's convective style. 

We have shown that at least 60% of the energy associ- 
ated with the descent of a subducting slab attached to a 
long, thick plate is dissipated by the bending of the slab, 
and up to 10% more may be dissipated in the fault zone 
adjacent to the slab. For shorter, thinner plates, the 
bending contribution decreases. Because the subduc- 
tion zone itself is so crucially important in determining 
the dynamics of plate tectonics and mantle convection 
on Earth, it is essential that subduction zones be han- 
dled carefully in numerical models of mantle convection. 
It is not clear that the implementation of convergent 
plate boundaries using piecewise continuous kinematic 
boundary conditions, low-viscosity boundaries, or even 
a faulted lithosphere can accurately reproduce the ex- 
treme importance of the bending lithosphere in a nu- 
merical model. One solution may be to apply a com- 
plicated, high-resolution gridding scheme, like the one 
used here in a local study, to a global mantle flow cal- 
culation. This would require intense gridding and com- 
putational effort. Alternatively, a more sophisticated 
parameterization of subduction zones must be devel- 
oped that mimics the dissipation patterns of bending 
and fault zone shear that occur in real subduction zones. 
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