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SUMMARY 
Cold, dense mantle lithosphere overlying hotter, lighter, asthenosphere creates a 
potential instability that should be enhanced if mantle lithosphere is mechanically 
thickened. For timescales shorter than those during which significant heat diffuses, this 
instability can be treated as a Rayleigh-Taylor instability, whose basic condition 
consists merely of a heavy layer overlying a lighter one in a gravitational field. We have 
calculated growth rates of small-amplitude perturbations as a function of wavelength 
for several structures and boundary conditions of geological interest. In the absence of 
thermal diffusion, the wavelengths at which instabilities grow most rapidly are likely to 
be about eight times the characteristic depth scale for exponential viscosity decay, 
which, for typical lithosphere, yields wavelengths between 40 and 90 km. Thermal 
diffusion, however, smoothes out temperature-induced density perturbations and thus 
slows the growth of short-wavelength instabilities. As a result, wavelengths for realistic 
lithospheric structures are expected to increase to 100 to 200 km, with maximum values 
up to 300 km. As this is of the order of lithospheric thickness, a Rayleigh-Taylor 
instability should produce only small anomalies in topography and gravity at the 
Earth's surface above the downwelling. For plausible ranges of lithospheric parameters, 
perturbations exhibit exponential growth, with growth rates as large as s-'. Such 
rapid growth rates correspond to e-folding times of three million years, for astheno- 
spheric viscosities of about 1019 Pa s. Viscosities greater than about lo2' Pa s allow 
thermal diffusion to slow growth rates to the point of stopping Rayleigh-Taylor growth 
completely. To simulate mechanical thickening of the lithosphere, we also include in our 
calculations non-zero horizontal strain rates, which can cause folding and boudinage 
instabilities. Folding instabilities will grow faster than those due solely to gravity when 
compression rates exceed about to s-l, corresponding to shortening of 
100 per cent in 30 to 300 million years. For strain rates of this magnitude, unstable 
growth occurs at wavelengths about 4 to 6 times the thickness of the lithosphere, as 
several others have previously shown. These wavelengths are significantly longer than 
those produced by the layered density structure alone. 

Key words: CoNsion belts, lithosphere deformation, mantle convection, orogeny, 
perturbation methods, rheology. 

1 INTRODUCTION 

The Earth is thought to be cooling by convective heat transfer 
below the lithosphere and conduction of this advected heat 
through it. The lithosphere itself is the upper boundary layer to 
convection in the mantle, a fact that requires temperatures in 
the lithosphere to be cooler than those of the underlying 
mantle. These lower temperatures permit the mantle litho- 
sphere to behave as a layer of strength, but also require 
densities to be greater than those of the mantle below. The 
resulting density inversion leads to convective downwelling of 

cold lithosphere into the hot mantle, manifesting itself as plate 
tectonics, in which lithospheric plates dive into the mantle at 
subduction zones. The temperature profile through the litho- 
spheric boundary layer also creates a potentially unstable 
density structure within the boundary layer itself (Fig. 1). The 
balance between gravitational forces causing the downward 
flow of dense material and viscous resisting forces determines 
the rate at which density instabilities in the lithosphere can 
grow. If material can be advected in this manner faster than the 
perturbations can be erased by thermal diffusion, density 
instabilities could lead to downwelling of the lower part of the 
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I 
Temperature and Density 

Brittle Upper Crust (n = 1000) 

Ductile Lower Crust 
:n = 3.5) 

Mantle Lithosphere 
(Olivine, n = 3.5) 

Asthenosphere 
(Olivine, n = 3.5) 

Effective Viscosity 
Figure 1. Cartoon of variations in temperature and density (left), and viscosity (right) through the lithosphere and into the asthenosphere. 

mantle lithosphere on a horizontal scale smaller than that 
expected for plate tectonics. 

If the lithosphere is mechanically thickened, as it could be at 
many mountain ranges, the density instability within the 
lithosphere could be enhanced. In this case, cold lithosphere 
will be forced downwards into hot asthenosphere, creating 
large lateral density gradients, which could help drive the 
instability (Fleitout & Froidevaux 1982; Houseman, McKenzie 
& Molnar 1981). Removal of the thickened lithosphere should 
then result in the uplift of the crustal portion of the lithosphere 
above (England & Houseman 1989). Because the gravitational 
instability produces 3-D flow, the subsequent removal of 
mantle lithosphere could have 3-D characteristics (e.g. Burov 
et al. 1990). 

For timescales shorter than those for which heat diffusion 
operates, the gravitational instability at the bottom of the 
lithosphere can be approximated as a Rayleigh-Taylor 
instability. In general, the timescale for the thermal smoothing 
of horizontal temperature differences with wavelength 1 is 
z=12/4rr21c, where IC is the thermal diffusivity (e.g. Turcotte & 
Schubert 1982, p. 154). For thermal anomalies with wave- 
lengths, I ,  between 300 and 600 km, and using IC = 1 mm2 s-’, 
we find z = 70 to 300 million years. Mountain belts can form on 
timescales shorter than this. For instance, both the Tien Shan 
and the Tibetan Plateau in Asia have formed since the collision 
of the Indian and Eurasian plates, about 50 million years 
ago (e.g. Molnar & Tapponnier 1975). Similarly, the crustal 
shortening in the Rocky Mountains of Colorado, Wyoming 
and Utah began between 75 and 85 million years ago and ended 
about 50 million years ago (Burchfiel, Cowan & Davis 1992, 
p. 459). For such timescales, an analysis of Rayleigh-Taylor 
theory can provide a simple approximation of the flow that 
results from the gravitational instability in the lithosphere. 
Moreover, simple calculations can be added to the Rayleigh- 

Taylor theory to approximate the retarding effect of thermal 
diffusion, as will be discussed later. 

Lateral compression or extension of the lithosphere also 
causes instabilities that can grow. These instabilities result 
from folding or pinching of lithospheric layers, have wave- 
lengths of the order of the thickness of the lithosphere, and 
grow at rates that scale with the horizontal strain rates that 
create them (Bassi & Bonnin 1988; Biot 1961; Fletcher & Hallet 
1983; Martinod & Davy 1992, 1994; Ricard & Froidevaux 
1986; Smith 1975, 1977; Zuber 1987; Zuber, Parmentier & 
Fletcher 1986). A few studies have included the effect of density 
inversions and corresponding gravitational instabilities in the 
lithosphere, but their analyses did not separate deformation 
due to gravitational instability from that due to horizontal 
deformation of the lithosphere (e.g. Bassi & Bonnin 1988; 
Ricard & Froidevaux 1986). Our goal is to isolate the effect 
of the gravitational instability between the lithosphere and 
asthenosphere. Towards this end, we focus on simple structures 
with density inversions to isolate the physically significant 
parameters and boundary conditions. 

We introduce simple additions to Chandrasekhar’s (1961) 
formalism of the infinitesimal growth of a Rayleigh-Taylor 
instability to study gravitational instabilities relevant to the 
Earth. The Earth’s lithosphere is complicated by non-linear 
stress-strain rheology, a continuous decrease with depth of 
both viscosity and density, and thermal diffusion of tem- 
perature fluctuations which create density anomalies. In addi- 
tion, we can include the effects of horizontal stretching or 
compression of the system by an external force, as presented by 
Bassi & Bonnin (1988), Fletcher & Hallet (1983), Ricard & 
Froidevaux (1986), Smith (1977), and Zuber et al. (1986). Some 
of these complications can be added to Chandrasekhar’s (1961) 
analysis to yield analytic solutions. These analytic solutions to 
the Rayleigh-Taylor problem provide useful physical insight 

01997 RAS, GJZ 129,95-112 



Rayleigh- Taylor- type instabilities 97 

into the behaviour of the instability. For more complex 
structures, we extended Bassi & Bonnin's (1988) approach to 
calculate growth rates numerically for various wavelengths of 
deformation. 

2 THE DENSITY A N D  VISCOSITY 
STRUCTURE OF THE LITHOSPHERE 

As previously discussed, the instability in the lithosphere arises 
from an increase of temperature with depth across this region 
(Fig. 1). This temperature gradient is approximately linear 
within the lithosphere, and adiabatic below it, where heat is 
transported largely by convection (e.g. Stacey 1992, p. 328). 
Continental lithosphere is thought to be roughly 100 to 300 km 
thick. A temperature increase of 1600 K across this region 
gives an average temperature gradient between 5 and 
15 K km-'. Ignoring pressure, the decrease of density with 
depth associated with temperature is (Stacey 1992, p. 250) 

For a density of p=3300 kg m-3 and a volume expansion 
coefficient of a,=3 x l o p 5  K-', the density gradient lies 
between -0.5 and - 1.5 kg m-3 km-'. 

Rock strength depends on temperature, so viscosity varies 
with depth in the lithosphere. Laboratory measurements and 
theory relate strain rate, E,  to stress difference, CT, by 

E =  A 6  exp (- E,i RT)  , (2) 

where n is the power-law exponent, E, is an activation energy, 
R is the gas-law constant, T is the temperature in kelvin, and A 
is a constant (e.g. Kohlstedt, Evans & Mackwell 1995). To 
convert this scalar relationship to one between tensors, one 
commonly exploits the second invariant of the stress tensor, 
which for 2-D plane strain is 

(3) 

Defining an effective viscosity, p, in the stress-strain 
relationship, 

ad = 2uQj -p6, , (4) 

eq. (2) yields 

1 
2A 

P= - exp(E,/RT)J?-")", 

where p is the pressure. Incompressibility requires that 

Ex, + Ezz = 0 . 

Combining (4) and (6), and assuming a pure shear field, yields 

(6) 

CT,, - a,, = 4pexx and ox, = 0 . (7) 

Inserting these relations into (9, and solving for the viscosity 
gives 

p =  ~A-'/n(~x,)('-n)/nexp(Ea/nRT). 2 (8) 

For an approximately linear geotherm through the 
lithosphere, 

T(z)  = To - P z ,  (9) 

we can express p as a function of z by substituting (9) into (8): 

and where we have considered a region where To >>pz. Thus, a 
linear increase in temperature with depth will produce an 
exponential decay of viscosity with characteristic decay length 
L (e.g. Fletcher & Hallet 1983). For an activation energy of 
E, between 400 and 600 kJ mol-' for olivine (Turcotte & 
Schubert 1982, p. 329), a temperature gradient between 5 and 
15 K km-I, To between 1000 and 1600 K, a power-law stress- 
strain exponent of n=3.5 (Kohlstedt et al. 1995), and the 
gas constant of R=8.31 J mol-' K-I, L can reasonably vary 
between 5 and 15 km. Values of L up to about 30 km are 
permitted, but require extreme values of all the relevant 
parameters. 

3 GENERAL EQUATIONS 

We start by considering the general case of viscous flow, with a 
power-law stress-strain relationship, and depth-dependent 
viscosity and density, building directly on analysis developed 
by Chandrasekhar (1961), Fletcher & Hallet (1983), and Smith 
(1975, 1977). Smith (1975) showed that in their initial stages, 
instabilities can be treated as the growth of small perturbations 
to the basic background deformation. If a background flow is 
created by tectonic forces acting along the x-axis, they induce a 
horizontal strain rate, ,,, and a basic state of pure shear in the 
layered medium. Assuming plane strain and incompressibility, 

E, - eZr = 0 and ZX, = 0 . 

The Rayleigh-Taylor problem is a special case of the pure 
shear deformation in which both E,, and E,, are small; 
instabilities are not induced by the background flow. Some 
background flow is required for non-Newtonian viscosity, for if 
n#1 and t x x = O ,  the viscosity as given by (8) is undefined. 
Thus, for non-Newtonian viscosity, some other background 
strain rate must be used to define the background viscosity. 
We can include small shear stresses in our definition of J2, or 
non-zero stresses in a third dimension to do this. Alternatively, 
we can let txx be non-zero, but it must be small enough to 
prevent the development of folding or boudinage instabilities. 
Below, we investigate instabilities in the range of Z,, that 
represents the transition between the two types of instabilities. 
Henceforth, our analysis of the Rayleigh-Taylor instability 
€or non-Newtonian viscosity implicitly assumes that some 
small background strain is present to define the viscosity. At a 
minimum, we can expect some background shear stress to be 
present at the top of the lithosphere due to plate motion, so we 
can reasonably expect the presence of some background stress 
with which we can define non-Newtonian viscosity. 

To first order, we describe perturbations to the background 
stress and strain rate by 

- 2F-  - I 2F-  
ox, = - E x ,  -p  , 

(Appendix A; Fletcher 1974; Fletcher & Hallet 1983; Smith 
1977). Here, n is the power-law exponent, Z, E, and j are first- 
order perturbations, denoted by a tilde, to the background 

(12) 
- -  

CT,, = - EZZ -j , s,, = 2ptxz . (1 3) n n 
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stress, strain, and pressure, denoted by an overbar. The 
effective viscosity, p ,  can be constant or vary exponentially 
with depth within a layer, as in (10). For a layer of constant 
viscosity, we simply let L in (1 1) be large. 

Newton’s laws of motion for a continuum applied to (13) 
yield the Navier-Stokes equations (Fletcher & Hallet 1983): 

aaxx aaxz 
ax az 

2F - 

O=-+- 

ux~x - P x  + F(GZZ + Wx,) + yii(G, + 3,) , - _  - 
n 

aaxz aa,, o=  - + - -g3 ax aZ 
- 2F 2yF- 
- m x z  + SIX)+ - W Z L  + -wz - n 

where subscripts now indicate partial derivatives, and we 
ignore inertial terms. Following Chandrasekhar (1961), we 
seek solutions with sinusoidal dependence on x: 
exp (ikx) , (15) 
where k is a wavenumber. This yields 

ikF= - -k2ii+ji(D2G+ikDW)+ 2F yp(Dii+ikW), 
n 

2p 2 -  2yF - Djj=p(ikDG-k23)+-D w+ -Dw-gp, 
n n 

where D=dldz and variables with tildes now express only the 
z dependence of perturbations. The equation of continuity and 
the assumption of incompressibility give 

V.u = ikG+ DW= 0 ,  

which, when applied to (1 6), yields 
(17) 

(18) 
% ,  

2F 2YF - D j  = -ji(D2 + k2)W+ - D2E+ - Dw - g 8 .  n n 
Eliminating pressure between these two equations yields 

D4W+2yD3W+ ( y2 -2k2 (i - 1)) D23-2 (i - 1) yk2D3 

+P(k2+y2)W= - P g p l p .  (19) 

Conservation of mass requires 

83 a7 ap 
at ax aZ -+u-+fw-=o. 

Allowing perturbations in density in the z-direction only, and 
assuming exponential growth in time with growth rate q such 
that W z exp (qt)  gives 

- - d 7  qp=-w- .  
dz 

Finally, applying (21) to (1 9) yields a homogeneous differential 
equation: 

We found (22) through an analysis in two dimensions. For 

instabilities induced by horizontal strain rates, a 2-D analysis is 
appropriate because the orientation of compression or exten- 
sion dictates the alignment of these instabilities. Structures 
that deform by a Rayleigh-Taylor instability, however, have 
no preferred orientation, and a 3-D analysis in required. 
Following Chandrasekhar (1961, p. 430), two horizontal 
dimensions can be combined using k2 = k: + k$ and a 3-D 
variation of (17), allowing (22) to be applied in three dimen- 
sions, but only for n= 1. For the general case, we use (22) to 
provide a solution in two dimensions, remembering that 
density instabilities can grow in three dimensions. We show 
below that the inclusion of non-Newtonian viscosity does not 
significantly affect the wavelength of maximum growth rate, 
suggesting that our analysis may be approximately valid in 
three dimensions for n # 1. 

4 B O U N D A R Y  CONDITIONS 

The four boundary conditions are continuity of vertical and 
horizontal velocity and of shear and normal stress on per- 
turbed interfaces. For a layer over a half-space, we apply two of 
four boundary conditions at the top, at z = h, and all four at the 
interface between them, z = 0. For a rigid upper boundary, the 
boundary conditions for vertical velocity, w, are 

W l = O  a t z = h ,  and W l = W 2  a t z = 0 ,  (23) 

where the subscripts 1 and 2 refer to the upper and lower 
layers, respectively. Using (17), the continuity of u across the 
boundary gives 

DWl=O a t z = h ,  and DW1=DW2 a tz=O.  (24) 

At the interface between the two fluids, z=O, small per- 
turbations to the flow can be described by a sinusoidal 
variation in the z-coordinate of the boundary: q z cos (kx). 
Ricard & Froidevaux (1986) show that, to first order, con- 
tinuity of shear stresses across a perturbed boundary requires 
(see Appendix B) 

where the notation 1,xz denotes the shear stress in layer 1. 
Chandrasekhar (1961, p. 432) shows that ax, can be 
determined from (1 3) and (1 7): 

If viscosity is continuous across the boundary, or if the 
horizontal strain rate is zero, then the right-hand side of (25) is 
zero. As this is the only place in which E ,  appears, horizontal 
shortening can cause an instability only where there is a 
discontinuity in viscosity at a boundary. On the other hand, 
the analysis of the density instability to follow requires (25) to 
be homogeneous. Because non-Newtonian viscosity is only 
defined if there is some background stress, if n # 1 and p1 # F 2 ,  
we require that this background stress be either shear stress or 
horizontal stress in a third dimension. Non-zero values of Zxx 
do not provide a homogeneous boundary condition. 

Finally, continuity of normal stress, gZz, is perturbed by the 
displacement of the interface between two layers of different 
density (see Appendix B): 

(27) bz - 522,zz = (p2 - pllgv at z=O . 
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If p I  > p 2 ,  this boundary condition generates a gravitational 
instability. Using (13) to determine a,,, and eliminating j using 
(18), we obtain 

We may eliminate '1 in (27) by taking its time derivative, which 
is the vertical velocity, 5. If, as assumed before, G grows 
exponentially, (28) becomes 

As (22) is a fourth-order differential equation, a complete 
description of flow in each layer requires four eigenfunctions 
with four undetermined coefficients. The lower half-space 
requires only two, as its flow must not diverge at depth. Thus, 
for m layers (including the half-space), we seek 4mf2  
unknowns, determined by 4m + 2 boundary conditions. 

5 ANALYTIC SOLUTIONS 

For cases in which the background strain rate, Z x x ,  is zero 
(i.e. the Rayleigh-Taylor case), we can find analytic solutions 
to (22), following the approach of Bassi & Bonnin (1988), 
Chandrasekhar (1961), and Whitehead & Luther (1975), of the 
form 

G= exp(ksz+qt), (30) 

where s=a+@. The constants a and f l  are given by Bassi & 
Bonnin (1988) and in Appendix C. For the case of a layer over a 
half-space, with a rigid upper boundary, boundary conditions 
(23), (24), (25), and (29) provide six equations and six 
unknowns. For cases in which & = O ,  and background 
viscosities are properly defined, the right-hand sides of all six 
boundary conditions are zero. In matrix form: 

MC=O (31) 

where M is a 6 x 6  matrix containing the six boundary 
conditions, and C is a vector containing the six undeter- 
mined coefficients. We simplify the elements of M by non- 
dimensionalizing the wavenumber, k,  and growth rate, q, by 
the relevant length- and time-scales. For the case of a layer over 
a half-space with constant viscosity in both, we use 

where q' and k are the dimensionless growth rate and 
wavenumber. 

For a non-trivial solution for C, M must have a non-trivial 
nullspace, which implies that the determinant of M must be 
zero. Setting det (M) = 0 yields an equation relating q', k ,  and 
n. We used a symbolic mathematical manipulation program, 
MAPLE, to alleviate the tedium of calculating this solution. 
The function q'(k') generally has a maximum at a unique 
wavenumber k',,, : qhax = q'(kmaX ). Because the growth rate 
for k,,, is largest, perturbations with this wavenumber will 
grow most rapidly. If we assume that the interface is initially 
perturbed at all wavenumbers, then the flow will be domi- 
nated, at least at small amplitudes, by deformation with 

wavenumber Pmax. We have calculated k,,, and qhax for 
various boundary conditions and viscosity and density 
structures. 

5.1 Layer over a half-space 

First, we consider a layer of thickness h overlying a half-space 
with p and p constant in each. Thus, L+ co, or y = 0. The ratio 
of the viscosity of the top layer to that of the lower half-space is 
given by the constant r = p L 1 / p 2 .  For the same exponent, n, 
describing power-law creep in both layers, the solution to 
det (M) = 0 gives 

( n -  I)[rsinh(26)+ cosh(2b)l +2cos2 ( ~ ) - - 1 m s i n ( 2 c ) - n -  1 
n -  l)[(r2 + l)cosh(2b)+2rsinh(2h)] - ( rz  - 1)[2cos2 ( c ) - n -  I ]  ' 

where 

k' k r n  
J;; fi 

b=- and c=- 

For pl = p2 giving r = 1 ,  (33) Simplifies to 

(33) 

(34) 

(35) 
2(n - 1) sinh (b) exp (b) - sin (2c) - 2 sin2 (c) q' = 

4b(n - l)[sinh (2b) + cosh (2b)l 

plotted in Fig. 2(a). If n = l ,  for Newtonian viscosity, (35) 
simplifies to 

1 - (2k2 +2k'+ 1) exp (-2k') 
4 k  

q' = 

for which qhax =0.097 occurs at k,,, = 1.69, or Amax =3.7h. 
If n =  co, corresponding to a purely plastic medium, (35) 
simplifies to 

k - sin (k') cos (k') 
2k 

q' = (37) 

which reaches a maximum where tan (2k) = 2k, giving 
qhax =0.61 at k,,, =2.25, or A,,, =2.8h. As shown in 
Fig. 2(a), there are several maxima, at approximately even 
intervals of A k  = n, the amplitudes of which decrease as k 
increases. Whereas qkax increases monotonically with n, kmax 
does so only slightly (Fig. 3). 

Suppose instead that the viscosity of the upper layer is much 
larger than that of the lower layer. For pL1 >>p2, giving r+co ,  
(33) simplifies to 

sinh (2b) - sin (2c) 
(n - 1) cash' (b) -t sin2 (c) 

q' = 

(Fig. 2b). Again we look at two special cases. For n =  1, (38) 
reduces to 

1 cosh (k') sinh (k) - k q'= 
2k ( k 2  + cosh' ( k )  (39) 

giving qhax =0.16 at kmax =2.12, or A,,, =3.0h. If n =  co, (38) 
also reduces to (37). 

The special cases of r = 1 and r-+ co are members of a family 
of solutions in which we allow r to vary. For r > 10, k,,, and 
qHax are approximately constant, indicating that (38) is 
approximately valid for all r > 10 (Fig. 4). In addition, as n 
increases, kmax and qhax become decreasingly dependent on r 
and approach the values given by (37). 
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Figure 2. Dimensionless growth rate q' versus dimensionless wave- 
number k' for a layer over a half-space and a rigid upper boundary, for 
various values of n. (a) Solutions to (35) for p1 = p 2 .  (b) Solutions to 
(38) for p1 >>pr. Non-dimensionalization is given by (32). 
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log n 

I I I I 
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Figure 3. (a) Plot ofKm,, versus n for a layer over a half-space. Solid 
line denotes curves for which p1 = p r .  Dashed line represents curves in 
which pl >>p2. Non-dimensionalization is given by eq. (32). (b) Similar 
plot of qLax versus n for the same two models. 

z3 -2 -1 0 1 2 3 
log r 

n=lM 
n=l( 

n 
-/// x) lo' I I I t 

-3 -2 -1 0 1 2 3 
log r 

Figure 4. (a) Plot of k'',, versus r where r = p l  /p2  for a layer over a 
half-space and a rigid upper boundary, for various values of the power- 
law exponent, n. Non-dimensionalization is by (32). (b) Similar plot of 
qLax versus r .  

5.2 Exponential decay of viscosity 

The viscosity of the lower lithosphere, as discussed previously, 
should vary exponentially with depth. For exponentially vary- 
ing viscosity, a rigid top, and a layered density structure, the 
growth rate depends on both L and h. To isolate a dependence 
on L, we consider the case of two infinite half-spaces of 
different densities, but with continuous viscosity across their 
boundary at z = 0. Thus, we use only four boundary conditions 
at the interface [eqs (C6) to (C9) of Appendix C] and disallow 
divergence of the solution in either half-space. We redefine the 
dimensionless expressions for q' and k in terms of y :  

The boundary conditions produce a 4x4 matrix M that 
must satisfy det (M) =O. Solving for q' in terms of k' and the 
power-law exponent, n , gives 

(Fig. 5), where a is given by (C2) and depends on n. For n= 1, 
(41) simplifies to 

and reaches a maximum of qkax =0.13 at kmax =0.89, or 
&,ax =7.1L. As n increases, qLax approaches 0.5 (Fig. 6), and 
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becomes 

"0 2 4 6 8 10 
k' 

Figure 5. g' versus k for a viscosity profile that decreases 
exponentially with depth as given by (41). Non-dimensionalization is 
by (40). 

7 
OO 1 2 3 4 5 

log n 

0' I I I I I 
0 1 2 3 4 5 

log n 

Figure 6. As Fig. 3, except for a viscosity profile that decreases 
exponentially with depth. Non-dimensionalization is given by (40). 

for n =  00, (41) becomes 

2k2 ql= - 
1 +4k2 ' (43) 

where q'=O.5 as k'+oo. There is no maximum value of q', but 
large values of k' (small wavelengths) seem to be the preferred 
mode of deformation in plastic materials. 

5.3 Linear decay of density 

Density can be expected to decrease linearly with depth in the 
lithosphere. Consider a layer over a half-space in which the 
density decreases from p1 at the top of the upper layer to p 2  
at the bottom and is continuous across the interface, z=O. 
Here, Dp= (pl  -p2 ) lh .  As (22) is too complicated to be solved 
analytically for variable or non-Newtonian viscosity, we con- 
sider only y = 0 and n = 1.  Non-dimensionalizing by (32), (22) 

Assuming a solution of the form (30), (44) becomes 

4 1 
s -2s2+1--=0.  q'k2 (45) 

Four solutions for s exist, giving four eigenfunctions for the 
general solution to (44): 

(46) wl = A eksi z + B - h z  + c ekszz + D - k s 2 ~  

where 

(47) 

For the 6 x 6 matrix, M, described in Appendix C, and for 
det (M) = 0, pl = p2  yields 

36 sinh (k'sl) sinh ( ~ ' s z )  +sls26[ 1 + cosh (k'sl) cosh (k's2)] 

+ 26.72 sinh (k'sl) cosh (k's2)26~1 cosh (k'sl) cosh (k'sz) = 0 .  

(48) 

The obvious solution s2 =0, or q'= 1 / k 2 ,  makes the eigen- 
functions in (46) degenerate and is not physically meaningful. 
The next largest root of (48) dominates the growth of per- 
turbations. We numerically solved (48) for q' as a function of k 
(Fig. 7). The largest root after q'= 1 / k 2  has a maximum of 
&ax =0.037 at k'max =2.2, or Amax =2.9h, compared with 
&,, =0.097 and A,,, =3.7h for a layer of constant density. 

For the case in which pl x p 2 ,  det (M) yields 

(4- 36') sinh (k'sl) sinh (k's2) 

-sls2[(6' -4)+ (6' +4) sinh (k'sl) sinh ( k s ~ ) ]  = 0 .  (49) 

Ignoring the degenerate solution q' = 1 /k", qhax = 0.059 at 
kmaX = 2.6, or a,,, = 2.4h. Again, the maximum wavelengths 
and growth rates are somewhat smaller than their corre- 
sponding values of qhaX =0.16 and amax =3.0h for a layer of 
constant density. 

6 EIGENVALUE APPROACH 

For cases of multiple layers with attendant multiple length- 
scales, we must turn our analysis to numerical solutions such as 
those given by Bassi & Bonnin (1988). We use the solution to 
eq. (22) for constant density within layers in Appendix C. 
From this solution for EJ, it is easy to calculate U, a,,, and ifzz 
from (17), (26), and (28) and apply them to the boundary 
conditions (23) to (25) and (27). 

These boundary conditions can be arranged in a matrix 
equation: 

MC=R, (50) 
where M is a 4 m t  2 x 4m+ 2 square matrix consisting of 
eigenfunctions evaluated at the boundaries, C is a vector of 
undetermined coefficients, and R is a vector consisting of the 
right-hand sides of the boundary conditions. The right-hand 
sides of (25) and (27) allow the inclusion of perturbations due 
to both gravity and horizontal strain rate, Zx,. We define the 
amplitude, qi, of a perturbation to each interface i, using a 
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Figure 7. (a) Plot of q’ versus k for a linear decay of density with 
depth and pi = p 2 .  The curve labelled ‘Root 0’ represents a degenerate 
solution which results as a solution to (48) but has no physical 
relevance. The next largest solution, ‘Root l’, is then the solution that 
controls the deformation. Other roots exist and are shown, but they do 
not contribute to the deformation because their growth rates are 
smaller than those of ‘Root 1’. (b) Similar plot for p, >>p2. 

vector H: 
m 

where qio is the initial perturbation of each interface, V j  is a 
normalized vector consisting of the relative amplitudes of 
perturbations to each layer, and q, is the corresponding 
growth rate; qio, V,, and q, are functions of the wavenumber, 
k.  The time derivative of the amplitude is simply the vertical 
velocity: 

dR W = -  
dt 

However, W can be expressed as a linear function of C by 

W=QC, (53) 
where Q, an mx4m+2 matrix, expresses this relationship. 

The right-hand sides of both boundary conditions (25) and 
(27) are linear in qi,  if qi is a sinusoidal function of x. Thus, R is 
a linear function of H: 

R=PH,  (54) 
where P is a 4 m f 2  x m matrix. Combining (50) and (52) to (54) 
yields 

This equation has the solution (51), where q; are the eigen- 
values of the matrix QM-’P, and V; are their corresponding 
eigenvectors. The largest growth rate, q, will dominate the 
growth of perturbations on the interface, and its corresponding 
eigenvector, V, will describe the relative amplitudes of defor- 
mation at each interface for this mode. Note, however, that in 
the presence of background strain, FXx,  perturbations will grow 
only if their growth rates are larger than Z,rx; otherwise the 
background state of pure shear will overwhelm them. 

6.1 

As we discussed previously, the representation of the 
lithosphere as a layer over a half-space with exponential 
decay of viscosity necessitates the use of two length-scales, the 
viscosity decay length, L,  and the thickness of the layer, h. 
Because the analytical solution is quite complicated, we 
exploit the numerical solutions described above. Let us con- 
sider a rigid upper boundary and power-law exponent, n. Fig. 8 
shows how q)max and kmax vary with the ratio L / h  for non- 
dimensionalization by L using (32) and for h using (40), for 
power-law exponents of n = 1 and n = 3.5. 

For L>>h, the wavelengths and growth rates approximate the 
case of a layer over a half-space, where q)max =0.097 and 
k‘,,,,, = 1.69 for n =  I, using (32) to non-dimensionalize by h. 
This is to be expected, because, for large L, viscosity remains 
approximately constant with depth, and the system behaves as 
a layer over a half-space. Conversely, if L<<h, the viscosity is 
strongly depth-dependent, and we must non-dimensionalize 
by L using (40). This gives q)max =0.13 and k‘,,, =0.89, the 
solutions produced by (42) for the case of exponential decrease 
of viscosity with depth. For L<< h, the system behaves as if there 
were no upper boundary. Between these extremes, dependence 
on both L and h is apparent. 

Exponential decay of viscosity in a layer 

6.2 Linear decay of density and exponential decay of 
viscosity 

The inclusion of a linear density profile provides a more 
realistic representation of the lithosphere. Using the numerical 
approach, we can include linear density gradients by dis- 
cretizing the density profile throughout many layers. Results 
using 50 layers are shown in Fig. 9, again for n = 1 and n = 3.5. 
For L>>h, viscosity remains nearly constant throughout the 
medium, and qHax =0.037 at k’,,,,, =2.2 for n= 1, as from (48). 

A comparison of Figs 8(a) and 9(a) shows that the linear 
density profile does not significantly affect the wavelength of 
maximum growth rate. Growth rates for linearly decreasing 
density, however, are consistently the smaller (Figs 8b and 9b). 
This is probably due to the redistribution of mass throughout 
the layer. Instead of the instability growing from a per- 
turbation at a single interface, it grows throughout the layer. 
For the case in which h z L ,  growth rates decrease with 
decreasing L; the increased viscosity of the upper part of 
the layer retards growth. Because we normalized the growth 
rate by the viscosity at the bottom of the layer, if L is small, 
only the bottom part of the layer can deform easily, and 
because of the small density difference across this region, the 
total potential energy available to drive the instability is small. 
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Figure 8. (a) Plot of k',,, versus the ratio L l h  with n = l  and n=3.5 
for a layer over a half-space with exponentially varying viscosity. The 
solid curves are non-dimensionalized by (32), using the layer height h. 
The dashed lines are non-dimensionalized by (40) using the viscosity 
decay length, L. End-member solutions on both sides reproduce the 
results shown in Figs I and 3 (see text). (b) Plot of qLax versus the 
ratio L l h  for the same viscosity structure. The range of L l h  that is 
reasonable for the lithosphere is shown. 

From another perspective, the viscosity of material affected by 
the perturbation increases as L decreases. 

6.3 Free surface 

We now consider a layer over a half-space with stress-free 
boundary conditions at the upper interface. These are now 
stress boundary conditions (25) and (27), in which we must 
specify the density discontinuity, Apt, across the upper inter- 
face. We express Apt as a multiple of the density contrast across 
the bottom interface, Apb: 

(56 )  

By definition, I9 is positive. In addition, if I9 < 1, the net density 
contrast across the layered structure is negative, and, because 
the free surface allows sliding of the entire upper boundary, 
infinite growth rates at long wavelengths result. Thus, we only 
consider I9 > 1. 

Growth rates are larger than we found for a rigid top 
because a free surface provides less resistance to deformation 
than does a rigid top; wavelengths for the free surface are also 
longer (Fig. 10). A comparison of analogous curves in Fig. 10 

o = - - .  AP 
APb 

, 

n = 3.5 

2 - '/ n = I O  - Lithosuhuic Relevance 

shows that larger viscosity contrasts, r,  across the bottom inter- 
face produce faster growth rates; therefore the growth 
rate increases monotonically with decreasing viscosity of the 
material below the layer. Moreover, wavelengths of maximum 
growth rate lengthen with increasing r .  As a result, the approx- 
imation of r -  co by r > 10 is not valid for a layer with a free sur- 
face, as we found for a rigid top. In addition, plastic medium 
(large n) generally produces slightly shorter wavelengths but 
significantly faster dimensionless growth rates. Finally, dimen- 
sionless growth rates and wavelengths are relatively independ- 
ent of the relative density contrasts given by 0, for I9 > 5. 

Although the surface of the earth is, of course, a free 
surface, these results have only indirect application to the 
earth, because the strong upper lithosphere acts as a rigid top 
to the deforming lower lithosphere. These calculations, how- 
ever, are useful because they can be compared to those for 
instabilities generated by horizontal strain rates, which require 
stress-free boundary conditions on the upper surface. This 
comparison follows. 

7 THERMAL D I F F U S I O N  

We have calculated characteristic wavelengths and growth 
rates for gravitational instabilities that grow from small 
fluctuations in density along horizontal interfaces. Because 
these density fluctuations are created by corresponding 
variations in temperature, thermal diffusion will tend to 
smooth out density anomalies from which instabilities can 
grow. Thus, gravitational instabilities will only grow if they can 
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Figure 10. Plot of k6,, versus 0 (left column) and &,, versus 0 (right 
column) for a layer over a half-space with a free surface. 0, defined by 
(56), is the ratio of density contrasts at the top and the bottom of the 
layer. Non-dimensionalization is by (32). Top, middle, and bottom 
rows show values for r =  1, r =  10, and r=100, respectively, where 
r=  p1 / p 2  and the effective viscosities of the layer and the half-space are 
constant.Various combinations of the two power-law exponents nl and 
n:! are shown. 

T ( x ,  z ,  t )  = Po exp (- qtt) cos (kx) cos 

by 

(59) 

where qt the rate at which thermal anomalies decay and is given 

do so faster than heat diffuses. The rate of heat diffusion can be 
estimated by a simple analysis of the heat diffusion equation. 

We begin by defining a temperature fluctuation, T ,  as 
a perturbation to the background temperature field with 
sinusoidal dependence on x. We expect the temperature 
fluctuations to be a maximum at the interface on which they 
grow, and to decrease to zero at the surface of a layer, which is 
presumably at a fixed temperature. For simplicity, we will 
assume that exhibits a quarter-wavelength sinusoidal 
dependence on z: 

P(x, 2, t = 0) = To cos (kx) cos - , (z) (57) 

where TO is an amplitude, k is a wavenumber and z =  h is the top 
of the layer. The time-dependent solution to the heat diffusion 
equation (Turcotte & Schubert 1982, p. 154), 

is simply 

qt = x(k? + 2) 
The first term of (60) represents horizontal thermal diffusion; 
the second term represents diffusion in the vertical direction. 

To compare the decay rates of thermal diffusion with the 
growth rates of gravitational instabilities, we must non- 
dimensionalize qt in the same manner we did q. Using (32) to 
non-dimensionalize by h, we find 

Here q; is the dimensionless decay rate of thermal diffusion. 
Because the amplitude of the growth rate resembles the 
inverse of a Rayleigh number, we define it as I/&. 
Non-dimensionalizing by L using (40), we find 

where the dimensionless number RL also resembles a Rayleigh 
number. 

Estimates of q; from (61) and (62) can be directly com- 
pared to previous calculations of q' because both represent 
dimensionless exponential growth rates (Fig. 11). Values of Rh 
or RL less than about 1 produce thermal diffusion rates that are 
fast compared to growth rates of density instabilities. Thus, for 
q' I q;, thermal diffusion will tend to smooth out temperature 
anomalies faster than they can be advected, preventing the 
growth of density instabilities. If Rh or RL are a few orders of 
magnitude larger than 1, we find q'2q;. In this case, density 
instabilities grow, but are slowed by thermal diffusion. We 
estimate the degree to which thermal diffusion affects growth 
rates by defining a net growth rate Q: 

Because of the quadratic dependence of q; on k ,  heat 
diffusion will suppress perturbations with large values of k 
(short wavelengths), as shown in Fig. 11. As a result, the 
wavelength of maximum growth rate shifts towards longer 
wavelengths. For the longest wavelengths, thermal diffusion 
occurs more rapidly across the vertical extent of the layer 
than across horizontal perturbations. This vertical diffusion 
results in a non-zero intercept of q; with k = O  (Fig. lla). 
Vertical diffusion through the layer can suppress the growth of 
long-wavelength instabilities. 

We examine the role of thermal diffusion in slowing maxi- 
mum growth rates and lengthening their corresponding wave- 
lengths by calculating @,,, and k,,, as functions of &, and 
RL, for a suite of density and viscosity profiles analogous to 
those presented in Figs 8 and 9. For Rh or RL greater than 
about lo3, Qmax and k,,, (Figs 12 and 13) approximately equal 
qiax and k',,, as calculated assuming no thermal diffusion 
(Figs 8 and 9). Below this transitional value of Rh and RL, 
growth rates and wavenumbers decrease. If h is the appropriate 
non-dimensionalization, total growth rates become negative 
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Figure 11. Plot of q' (solid lines) and q; (dashed lines) versus k (a) for 
a layer of constant viscosity over a half-space and (b) for two half- 
spaces of different densities and continuous exponential decrease of 
viscosity with depth. For q', several values of n are shown, and the re- 
sults are the same as those in Figs 2(a) and 5. For comparison, decay 
rates of perturbations due to thermal diffusion, qi, are shown, and are 
non-dimensionalized by (61) and (62). It is assumed in (b) that L<< h, so 
the vertical diffusion of heat is ignored in this case. Several orders of 
magnitude of R), and RL are shown. Where q' > qi, we expect growth of 
temperature-induced density instabilities. 

k' 
"0 

below values of Rh between 10 and 100 (Fig. 12), and 
Rayleigh-Taylor growth is effectively stopped. Wavelengths of 
maximum growth rate are increased by a factor of about 2 in 
this range. If L is the important length-scale, differences exist 
between constant and linear density profiles. Values of RL as 
low as about 1 permit growth for the constant-density case 
(Fig. 13). For linear density profiles, thermal diffusion stops 
Rayleigh-Taylor growth at values of RL between 10 and 100. 
For both profiles, if L<<h, wavelengths of maximum growth 
rate can be several times those found without the inclusion of 
thermal diffusion, as values of k',,, close to zero are permitted. 

8 
RATES 

Horizontal compression or extension of a layered structure 
can cause unstable growth of folding or boudinage type 
deformation (Bassi & Bonnin 1988; Fletcher & Hallet 1983; 
Martinod & Davy 1992, 1994; Ricard & Froidevaux 1986; 
Smith 1975, 1977). Horizontal straining of a plastic layer pro- 
duces growth rates that scale with the horizontal strain rate 

THE ROLE OF HORIZONTAL STRAIN 

and wavelengths 4 to 6 times the thickness of the deforming 
layer (e.g. Martinod & Davy 1992; Ricard & Froidevaux 1986). 
We have already studied the case in which Zxx is zero or very 
small; we now increase E X x  to determine the magnitude of zxx at 
which horizontal strain rates begin to dominate unstable 
growth. For these calculations, we use the numerical method 
described above. For simplicity, we include thermal diffusion in 
a qualitative discussion to follow. 

The right-hand sides of boundary conditions (25) and 
(27) give the forcing terms for instabilities that result from 
horizontal strain rates and gravity, respectively. The vector R 
in (50) contains these forcing terms, which are incorporated 
into growth rates in the formation of matrix P in (54), and 
finally in the solution to (55). For simple layered structures, if 
the magnitude of the forcing term of one of (25) or (27) is much 
larger than the other, then it will dominate the elements of P. 
As a result, the style of deformation determined by the solution 
to (55)  will also be controlled by this term. 

The importance of the relative magnitudes of the gravi- 
tational and strain-rate forcing terms prompts us to define 
their ratio as a dimensionless number, f .  In determining the 
ratio of the right-hand sides of (25) and (27), we note that the 
amplitude of the perturbation, q, cancels, and its derivative 
leaves a wavenumber, k. For folding, we expect the wave- 
number to scale inversely with the layer thickness, h, so we use 

If there are several interfaces on which instabilities can 
develop, the interface with the largest density discontinuity 
will dominate the growth of gravitational instabilities, if this 
density change is of favourable sign. Similarly, Ap and h must 
correspond to the plastic layer that folds or thickens under 
compression or extension. 

To illustrate the transition of behaviour for increasing values 
off, we included Zxx in the analysis of a plastic layer (n = 1000) 
over a half-space with Newtonian viscosity. To allow folding or 
boudinage of this layer, we applied stress-free boundary con- 
ditions to the top surface, using (25) and (27) at z .  To represent 
deformation of the mantle lithosphere, we used densities 
above, in, and below the layer of 2800,3300, and 3250 kg mp3, 
corresponding to densities of the crust, mantle lithosphere, and 
asthenosphere and giving O =  14 using (56). This value is well 
beyond the transitional value of about O =  5 above which 
maximum wavelengths are independent of 0. As we have 
shown, the ratio of viscosities between the layer and half-space 
does affect growth rates and wavelengths; we used r = 100. 

Maximum growth rates and their corresponding wave- 
lengths vary withf (Fig. 14), for both compression and exten- 
sion. Forf<< 1, gravitational forcing dominates, and q)max = 32 
and k,,, = 1.09, or I,,, = 5.7h, consistent with the values of 
qLax and k',,, found for the purely gravitational instability 
shown by the solid curve in Fig. 10 for r = 100. For large values 
of FXx corresponding to f x  1, growth rates increase linearly 
with f .  The characteristic wavenumber of k',,, = 1.48, corre- 
sponding to A,,, =4.2h, for both compressional and exten- 
sional deformation, agrees with the results of Smith (1977) 
and Martinod & Davy (1994). The eigenvectors, V, associated 
with growth at this wavelength show that compression and 
extension produce folding and boudinage, respectively. 

Between the two extremes presented above, the gravitational- 
and strain-rate-dependent instabilities compete, and the 
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Figure 12 Plots showing how k,,, and Qmax vary with Rh. Results 
are given for exponential decrease of viscosity in a layer and Ll h 2 1 ,  as 
given by (63) and non-dimensionalized by (61) and (32). The left 
column shows results for a single density step at the bottom of the layer, 
while the right column shows those for a linear decrease in density 
across the layer. Thick lines indicate results for n = 1 and thin lines for 
n = 3 . 5 .  The ratio of Llh for each line is indicated. k,,, is not shown at  
values of Rh for which Qmax < 0. 

resulting deformation will be the result of some combination of 
the two. As shown in Fig. 14(a), this interplay between 
horizontal strain rates and gravitational instabilities shortens 
the characteristic Wavelength for compression and slightly 
lengthens it for extension. This behaviour can be explained 
by the relative stability of folding and boudinage modes of 
deformation when strain-rate forcing becomes important. As 
shown by the eigenvector for small f ,  the top surface does not 
exhibit significant deformation under pure gravitational 
forcing. Such behaviour resembles boudinage in the lower half 
of an extending layer (Ricard & Froidevaux 1986). Folding of a 
layer in compression, however, deforms the upper surface 
significantly. As a result, when compression first begins to 
dominate growth, it must do so in the presence of a boudinage 
mode of deformation. This mode, however, does not grow 
rapidly for compression because compression tends to thicken 
the thin, and therefore weaker, regions of the layer, the 
'pinches' in a 'pinch and swell' instability. In addition, 
boudinage grows most rapidly for compression at wavelengths 
shorter than those for folding (e.g. Martinod & Davy 1992; 
Ricard & Froidevaux 1986). In the range of f  where com- 
pression begins to suppress Rayleigh-Taylor growth, both 
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Figure 13. Similar to Fig. 12 for L l h s  1, using (62) and (40) for non- 
dimensionalization. A range of RL appropriate for the lower 
lithosphere is indicated, as described in the text. 

grow with comparable wavenumber but with opposite eigen- 
values. As a result, maximum growth rates develop with quite 
different wavelengths. In particular, compression induces 
deformation similar to boudinage at wavelengths shorter 
than those generated by folding or gravitational instabilities. 
It is clear from Fig. 11 that the range off over which this 
wavelength shift occurs can be several orders of magnitude. 

The transition from gravitationally to strain-rate-induced 
instabilities with increasing Zxx  is also apparent for structures 
resembling the lithosphere (Fig. 15). The model used here 
(Fig. 15) contains two layers overlying a half-space: a top layer 
of thickness hl, plastic viscosity, a free surface, and constant 
viscosity, over a layer of thickness hz with Newtonian viscosity 
and exponential viscosity with decay length L. Density 
decreases linearly and continuously across both layers. A 
lower half-space with constant effective viscosity and density 
represents the as thenosphere. Non-dimensionalization is given 
by (40) because L is the relevant parameter in the gravitational 
instability. The relative values of hl, h2, and L will clearly affect 
the growth rates and wavelengths that form. To illustrate a 
transition between the two styles of deformation, we used 
hi = h ~  = 12L and chose f such that both gravitational and 
strain-rate forcing are apparent. 

Gravitational forcing of the type described above is evident 
in Fig. 15 at q& =0.009 and k',,, =0.78, or A,,, =8.1L, and 
is consistent with our calculations for a layer with exponential 
viscosity and linear density dependence on depth (Fig. 9). 
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Figure 14. (a) Plot of kLan versusf for a plastic layer (n = 1000) with a 
free surface over a half-space with Newtonian viscosity, as described in 
the text. Non-dimensionalization is by (32). Solid lines represent com- 
pression and dashed lines represent extension. (b) Plot of qhax versusf 
for the same layer. The relative amplitudes of deformation of the top 
and bottom interface are given by the elements of the eigenvector, V, 
which correspond to the maximum growth rate. Forf<< 1 (Rayleigh- 
Taylor), V = (0.05,0.99); most of the deformation occurs on the bottom 
interface. Forf>> 1 and ZXx compressive, V=(0.71,0.71). Thus, the two 
interfaces deform in parallel, and a folding instability develops. For 
f>> 1 and Z, extensive, V =(0.71, -0.71); the two interfaces deform in 
opposite directions, creating a boudinage instability. Thermal diffusion 
has been ignored. 

Although the top surface is free, the density instability occurs 
at the bottom of the lithosphere, and the high-viscosity upper 
layer serves as a rigid top. Thus, the growth rates and wave- 
lengths which occur for small horizontal strain rates are closer 
to those for a rigid top than for the free surface. If horizontal 
strain rates are large enough, the plastic layer begins to 
undergo folding or boudinage at long wavelengths; in Fig. 15, 
I,,, =63L=5.2h, for compression and A,,, =43L=3.5hl for 
extension. These are consistent with Martinod & Davy’s (1992) 
estimate of I,,, w4h, with shorter wavelengths for boudinage 
than for folding. 

The growth rates of the folding and boudinage modes 
scale with the horizontal strain rate and thus will grow pro- 
portionally withf. For values off greater than those used in 
Fig. 15, the instabilities that grow fastest will be those induced 
by horizontal strain rates. The transition between gravitational 
and strain-rate instabilities occurs at some critical value off.  
At this value, the growth rates of the folding or boudinage 
modes, which scale withf, become larger than the growth rate 
of the Rayleigh-Taylor mode, which does not change withf. In 
the example shown in Fig. 15, the transition between styles of 
deformation occurs f o r f z  1,  with higher critical values off for 
extension than for compression, because of slightly faster 
growth rates for folding, as Smith (1977) predicted. 

The inclusion of thermal diffusion in the calculations for Figs 
14 and 15 would, as we have seen, reduce the maximum growth 
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Figure 15. Plot of qhax versus k for the lithospheric model 
described in the text and shown in cartoon form in the inset. Non- 
dimensionalization is by (40), and thermal diffusion is ignored. 
Transitional values of the horizontal strain rate, C,,, are shown: the 
critical value of G, occurs forf = 0.7 for compression (solid line) and 
f= 2.0 for extension (dashed line). Three peaks are apparent: Peak A is 
induced by compression and represents folding, Peak B is induced by 
extension and represents boudinage, and Peak C is generated by the 
gravitational instability at  the bottom of the lithosphere. Peaks A and 
B, because they are induced by horizontal strain rates, have growth 
rates which scale with txx, while the growth rate of Peak C is 
independent of F x x ~  Thus, for values off larger than those presented 
here, folding or boudinage overwhelms Rayleigh-Taylor growth. 
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rates and increase the wavelengths at which they occur for 
gravitationally induced instabilities. Depending on the relevant 
values of R h ,  the reduction in growth rates can range from 
insignificant to complete. If growth rates are slowed, but not 
stopped, we can expect them to be reduced by a factor of about 2 
or 3, as seen in Fig. 12. From Fig. 14, a factor of 2 or 3 slowing of 
the growth rate will result in a decrease in the transitional value 
off by a similar factor. A decrease in f by an order of magnitude 
requires values Of R h  close to the point at which Rayleigh-Taylor 
growth stops completely. Because we have not constrained the 
transitional value off to an order of magnitude, we do not expect 
thermal diffusion to significantly change our estimation of the 
transitional value off, unless it does so by completely halting 
Rayleigh-Taylor growth. In that case, strain-rate-induced 
instabilities dominate throughout the entire range off. 

9 APPLICATION TO THE LITHOSPHERE 

As discussed above, the lithosphere is characterized by both 
an approximately exponential decrease of viscosity and a 
linear decrease in density with depth. The exponential decay 
constant, of the order of 5 to 12 km, is much smaller than 
the thickness of continental lithosphere, which could be of 
the order of 100-300 km, 10 to 30 per cent of which is con- 
tinental crust. With a density gradient between -0.5 and 
-1.5 kg m-3 km-3 for the mantle lithosphere, an appropriate 
model for deformation in the lower half of the mantle litho- 
sphere, ignoring thermal diffusion, is used in Fig. 9, with h 
between 50 and 150 km, L between 5 and 12 km, and n=3.5. 
Thus, the ratio Llh can reasonably vary between 51 150=0.03 
and 12/50=0.25. From Fig. 9, we find that k,,,, which does 
not vary with the ratio Llh in this range, must be about 0.8, 
giving I,,, = 7.8L, and corresponding to dominant wave- 
lengths between 40 and 90 km. 
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This wavelength range provides a lower bound on the 
permitted wavelengths of maximum growth rate for the case 
in which thermal diffusion is negligible. This range requires 
values of RL greater than about lo4, as shown in Fig. 13 for 
linear density and n=3.5. Smaller values of RL force longer 
wavelengths by damping out the shorter ones. To obtain a 
reasonable range in RL, we assume a viscosity at the base of 
the lithosphere of P a s  (e.g. I-Iager 1991) and 
Ap = 75 kg m-3 to the definition of RL in (62). RL can reason- 
ably vary between about 9, using L=5 km, and 400, using 
L= 12 km. Of the parameters included in the calculation of RL, 
pb is the most poorly constrained and could vary from Hager’s 
(1991) value by an order of magnitude, thus increasing the 
possible range RL. Applying this range in RL to Fig. 13 for 
linear density, n =  3.5 and Lih=O.l, we expect wavenumbers to 
vary between k,,, =0.25 for L x 5  km and km,, =0.7 for 
L x  12 km. Both extremes produce A,,, x 100 km. If the ratio 
Lih is less than 0.1, smaller values of k,,, are available, which 
produce longer wavelengths. To achieve low values of L l h ,  L 
must be small, so significantly longer wavelengths are not 
likely. Wavelengths of ,I,,, =200 km seems to be a maximum, 
achieved by a conspiracy of L z 7 km, h x 150 km, RL z 30, 
giving kmaX x0.2. Lowering viscosities below Hager’s 1019 Pa s 
value should shift the range of wavelengths towards smaller 
values. Higher viscosity could force part of the range in RL to 
fall below RL = 10, the approximate minimum value for which 
density instabilities can grow. In this case, only for large values 
of L will Rayleigh-Taylor growth occur. At the extreme, values 
of L near 12 km, combined with k,,, =0.25 could produce 
wavelengths up to 300 km. If asthenospheric viscosities are 
greater than lo2’ Pa s, the growth of density instabilities will 
be stopped completely. 

Unlike wavenumbers, growth rates Qmax vary significantly 
with the ratio Llh ,  as well as with RL (Figs 9 and 13). From 
Fig. 13, we estimate a maximum value of non-dimensionalized 
total growth rate of Qmax =0.02. Minimum growth rates 
are, of course, zero for a range of lithospheric structures with 
RL < 10. Using (40) and the parameter values above, we 
estimate a maximum growth rate of 4 x SKI. As before, 
pb is poorly constrained, so maximum growth rates for 
gravitational instabilities in the lithosphere could range from 
lopt4 s- ’ to zero, which corresponds to e-folding timescales 
of three million years and higher. Because of exponential 
growth, this range of growth rates places the Rayleigh-Taylor 
instability as a descriptor of lithospheric downwellings on 
a scale of relevance between negligible importance and 
dominance. 

Detection of Rayleigh-Taylor instabilities at the base of 
the lithosphere from measurements at the surface of the Earth 
is likely to be difficult. Turcotte & Schubert (1982, p. 123) 
estimate the length-scale for compensation of surface loads on 
a typical lithosphere with flexural rigidity D= loz3 N m to be 
about 420 km. Loads exceeding this wavelength and generated 
at the bottom of the lithosphere would be expected to be 
compensated at the surface. Lithospheric Rayleigh-Taylor 
instabilities, as described above, generate loads of shorter 
wavelength, and thus would not be expected to produce 
measurable surface deformation. 

The gravity signal of perturbations at wavelengths expected 
for Rayleigh-Taylor growth is unlikely to be detected. Density 
perturbations at depth z and of wavelength 1 produce a 
gravitational signal that decreases as exp (- 2nzlA) (Turcotte 

& Schubert 1982, p. 221). Consider a perturbation with a 
density anomaly of about 50 kg mP3, at a depth of about 
100 km, a range of wavelengths between 100 and 200 km, and 
an amplitude of the order of 20 km. The surface Bouguer 
gravity anomaly associated with this density anomaly is 
between lop2 and loo mgal, with higher values for longer 
wavelengths. Terrain corrections in mountainous regions have 
uncertainties which are much larger than this. 

We have shown that as horizontal strain rates increase, they 
begin to overwhelm the growth of Rayleigh-Taylor-type 
instabilities. The transition from gravitationally to strain-rate- 
induced instabilities occurs when the ratio of their forcing 
terms, expressed by the dimensionless factorf in (64), reaches 
some transitional value. Figs 14 and 15 show transitional 
values off between 0.1 and 1, but we can assume that litho- 
spheric structures exhibit a range of transitional values off. In 
addition, we have seen that diffusion of heat can be expected to 
decrease transitional values off by a factor of 2 or more. Using 
(64), with Ap=50 kg m-3, p =  loz2 Pa s for the viscosity of the 
mantle lithosphere, h = 50 km to address folding of upper 
lithosphere, and with a critical value off between 0.1 and 1, 
horizontal strain rates of loK’’ to s-’ are necessary for 
these horizontal strain rates to control unstable growth. 
Because we have not adequately constrained f ,  and because of 
the uncertainty in asthenospheric viscosity, this figure is 
approximate. A compressional strain rate of Fx, = s-’ 
requires shortening by a factor of 2 in 30 million years, as 
seems to characterize Tibet (Molnar, England & Martinod 
1993). For horizontal strain rates greater than the critical 
value, wavelengths significantly longer than those predicted by 
Rayleigh-Taylor analysis are possible, with growth rates that 
scale with the horizontal strain rate. 

Lithospheric instabilities produced by horizontal strain rates 
typically exhibit wavelengths 4 to 6 times the effective thickness 
of the lithosphere (Martinod & Davy 1992). Thus, we expect 
folding and boudinage to occur with wavelengths of the 
order of 4 to 6 times 50 km, or 200 to 300 km, typical of 
widths of regional mountain belts. These instabilities are 
also more likely to produce significant surface deformation 
than are density instabilities because they directly deform the 
surface. This observation, however, does not diminish the 
possible importance of density instabilities in the growth of 
surface structures. At finite amplitudes, perturbations in 
density might grow at the bottom of the lithosphere, below the 
region of folding and boudinage at the surface. In this way, 
horizontal shortening could serve to promote the growth of 
long-wavelength density instabilities by creating an initial 
perturbation from which these density instabilities can grow. 

10 CONCLUSIONS 

Gravitational instabilities at the bottom of the lithosphere 
grow at rates that depend on viscosity, the rapidity with 
which this viscosity decreases with depth, and the magnitude of 
the density inversion which creates them. The wavelength of 
the fastest-growing deformation is about eight times the 
length-scale for the exponential decay of viscosity. Thermal 
diffusion suppresses the growth of such wavelengths and 
therefore lengthens those of maximum growth rate to a 
range between 100 and 200 km for continental lithosphere, 
with wavelengths of 300 km possible for particular sets of 
lithospheric parameters. Because these disturbances occur 
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at depths comparable to  their horizontal length-scales, we 
would not expect them to produce a significant surface defor- 
mation. Deformation grows exponentially with e-folding times 
as low as three million years, depending on  the viscosity 
assumed for the bottom of the lithosphere, and the e-folding 
length of viscosity. Such rapid growth rates could destroy 
lateral heterogeneity in the bottom part of the mantle litho- 
sphere. Alternatively, the acceptable range of lithospheric 
parameters allows thermal diffusion to  smooth over tem- 
perature-induced density perturbations, thus preventing the 
growth of Rayleigh-Taylor instabilities. 

These growth rates and wavelengths are applicable only if 
Rayleigh-Taylor instabilities grow more rapidly than distur- 
bances that grow due to  horizontal stretching or shortening of 
the lithosphere. For significantly rapid horizontal compres- 
sion or extension, instabilities with longer wavelengths devel- 
op and overwhelm the Rayleigh-Taylor growth. We estimate 
this transitional strain rate to  be in the range of to  
10-16 s-l , corresponding to shortening or extension of 100 
per cent in 30 to  300 million years. These strain rates are 
comparable to strain rates observed in tectonically active 
regions of the Earth. 

Mechanical thickening of the lithosphere could induce long- 
wavelength instabilities at the bottom of the lithosphere 
which, a t  large amplitudes, would pinch off and fall into the 
mantle, causing the overlying material to  converge and create 
rapid surface uplift (England & Houseman 1989; Fleitout & 
Froidevaux 1982; Houseman et af. 1981). Such rapid uplift may 
have occurred 5 to  10 million years ago on the Tibetan Plateau, 
over a region hundreds of kilometres wide (Harrison et al. 
1992; Molnar et al. 1993). Our results suggest that significantly 
shorter wavelengths would dominate a strictly Rayleigh- 
Taylor representation of this instability. The inclusion of 
thermal diffusion can serve to lengthen wavelengths of maxi- 
mum growth rate, but wavelengths as large as the widths of 
major mountain belts seem difficult to achieve. 

Our analysis is restricted to  small amplitudes, and does 
not fully integrate gravitational instability and thermal 
diffusion as they must be in a complete convection calculation. 
If long-wavelength perturbations are to  grow, they must d o  so 
under conditions for which a linear analysis of a Rayleigh- 
Taylor instability is inappropriate. Significant horizontal 
compression or extension can generate wavelengths com- 
parable to  the width of mountain ranges. In addition, con- 
vective heat transfer could impose flow a t  long wavelengths 
or generate long-wavelength perturbations that could grow 
as gravitational instabilities. If the spectrum of initial per- 
turbations is shifted heavily towards long wavelengths by 
tectonic or convective processes, these long-wavelength per- 
turbations could reach finite amplitudes before more rapidly 
growing perturbations at shorter wavelengths because they 
begin growth from larger amplitudes. 
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APPENDIX A: FIRST-ORDER 
EXPRESSIONS OF STRESS A N D  STRAIN 
RATE 

Thk zero-order terms of an expansion of the flow produced by 
horizontal compression, Ex,, produce a basic state of pure 
shear (Smith 1977). Consider the first-order terms of the 
expansion, which provide information on the behaviour of 
perturbations to this state (Fletcher 1974). Then (4) becomes 

(A21 
Applying (A2) to (Al) gives 

(-43) 
We can simplify (A3) by subtracting the basic state: 
- - 
a,, = 2@,, - p  , arz = 2Ti7,, -p  , Fxz = 2@,, = 0 .  (A4) 

Eliminating second-order terms, and using incompressibility 
yields (13), from which we calculate the growth of perturbations 
to the basic flow. 

APPENDIX B: STRESS BOUNDARY 
CONDITIONS 

Stress must be continuous across a boundary. If the 
z-component of that boundary is perturbed by deformation 
given by 

q = qo cos (k-4 1 (B1) 

then the stress must be continuous across this perturbed 
boundary. Because the boundary slopes, the total shear stress 
on one side of the boundary is given, to first order, by 

Continuity of shear stress, using (B2) and (7), yields 

Similarly, continuity of normal stress across the perturbed 
boundary yields 

61,rz - 52,zz  = - (PI  --Pz)gll ' (B4) 

These boundary conditions contain information about the 
forces that amplify perturbations to the basic flow. If there is a 
horizontal strain rate, Z,,, then the shear stresses (B3) create 
instabilities of a folding or boudinage type (e.g. Ricard & 
Froidevaux 1986). If there is a density discontinuity, (p l  -p2) ,  
perturbations are amplified by normal stresses (B4). If both 
forces are present, which of them dominates depends on their 
relative magnitudes. 

APPENDIX C: SOLUTION METHOD 

For flow within a layer, Bassi & Bonnin (1988) suggest a 
solution to (22): 

ea'kz + C cos( Pkz) 
sin(pkz) 

W = A cos(Bkz) ea'kz + B- 
Pk 

where W gives the z dependence of W, and 

From this solution for W ,  we calculate W, U, 5,,, and 6,, from 
(17), (26), and (28). These solutions are applied to the boundary 
conditions (23) to (25) and (29). 

For a layer over a half-space, with a rigid boundary at the 
top, z=h, we use (Cl) to solve for the flow in both layers, 
letting E,  F,  G, and H replace A, B, C, and D, in the solution to 
flow in the lower layer. To prevent divergence of W at large 
negative z ,  G=H=O. We use (32) to non-dimensionalize the 
analysis. Among the boundary conditions (23) to (25) and (29), 
Wl (h) = 0 gives 

sin(plk') 
Acos(P,k') eaik'+B- Plk eaik'+Ccos(&kI) eark 

iil(h) = 0 gives 
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Table 1. Symbols. 

Space coordinates 

Velocity, with the x and z-components 

Density, density difference 

Viscosity, viscosity difference 

Power law exponent for stress-strain rheology 

Thickness a layer 

Viscosity decay length 

Growth rate for Rayleigh-Taylor instabilities 

Dimensionless growth rate using length scales h and L 

Maximum growth rate 

Exponential decay rate of temperature anomalies by thermal diffusion 

Total growth rate, nondimensionalized in the same manner as q’ 

Dimensionless number describing the relative roles of thermal diffusion 

and advection, using length scales h and L 

Wave number of Fourier component 

Dimensionless wave number for the two length scales 

Wavenumber, wavelength of maximum growth rate 

Perturbation to hydrostatic pressure, stress tensor, strain rate tensor 

Horizontal strain rate due to tectonic forces 

Eigenvalues and eigenvectors corresponding to growth rates and 

amplitudes of perturbations of interfaces 

Ratio relating strain rate forcing to gravitation forcing 

Ratio of density contrasts above and below a layer. 

Ratio of the viscosity in a layer to that of the material below it. 

Uy (0)  = U>2( 0) gives 

A+C-E=O. 

Ul(0) = U2(0)  gives 

Aai + Blk  + Car + D l k -  Eai- F l k  = O  

51,~.(0) = 6 ~ , ~ ~ ( 0 )  gives 

2 4  2af 
A( 1 + ui2 - p:) + B k  + C(1+ ait2 -&) + DT]  

= O  

EkM:” + F g) = 0 ,  
B I  

where 

and M(” and M(4) are the same as M(I)  and M ( 2 ) ,  except that a’ 
is replaced by a”. As expressed in (31), eqs (C4) to (C9) can be 
arranged in the 6 x 6 matrix, M, multiplied by a vector C that 
contains the undetermined coefficients A to F.  As discussed in 
the text, the solution to det (M) = 0 gives an expression for q‘ as 
a function of k. 

For exponentially varying viscosity in two adjoining half- 
spaces, we must prevent divergence of W for both 2 > 0 
and z < 0. Thus, we require A = B = G = H = 0. We need only 
four boundary conditions to determine the four remaining 
unknowns. Eqs (C6) to (C9) then form the rows of the 4 x 4  
matrix, M, times the coefficient vector C. 

For the case of linearly decreasing density with depth, we 
need to solve (44). For the upper half-space, we use (46) and 

( c g )  

(C9) 
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(47). For the lower half-space, we use the solution: 

~2 = E ekz + fiz ekz . (C11) 

After some simplification, boundary conditions like those in 

(C 12) 

(C 13) 

As1 - B s ~  + C S ~  - D s ~  - E -  F = O f  

4 ( 2 +  6)+BP,(2+ 6) + CPl(2 - S)+DP1(2 - 6) 

- 2Ep2 - 2Fp2 = 0 ,  

(C 15) 

(C16) 
(C4) to (C9) become 

- Ap1 SI 6 + Bpi $1 6 + Cp1~2 6 - Dp1~26 A eksl + B  e-ksl + C ekS2 + D  e-kS2 = O  

+=(PI -!J2)-2FP1 = o ,  (C 17) 

where SI, s2, and 6 are defined by (47). As before, eqs ((212) to 
(C17) form a 6 x 6 matrix, M, which must satisfy det (M) = 0. 

As1 eksl - Bs, ePksl + Cs2 eksz - Ds2 e-"2 =I), 

A + B + C + D - E = O ,  (C14) 
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