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Ultimately, the plate motions are the surface
expression of mantle convection.

But how, specifically, are they linked to convection?

What is the driving force?

Holmes [1931]




Plate Tectonics: What is the Diving Force?
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-or = Drag Force -or = Drag Force
~sp = Slab Pull - = Transform Resistance
~cp = Continental Drag -cr = Colliding Resistance
-=p = Ridge Push -<r = Slab Resistance




Estimates of the Major Plate-Driving Forces

Ridge Push

Fy

Fm

F.- = Integrated Pressure Difference
Frp=F,-F,-F
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F., ~2x10” N/m for 50 Myr old seafloor




Estimates of the Major Plate-Driving Forces

Ridge Push

Fy

Fm

2 X 1012 N/m

Turcotte & Schubert [2002]

Slab Pull

h
F.» = Excess weight of slab = ApghL

Fup = (50 k—ga)(1 Oﬂz)(75km)(600km)
m S

F.» ~3x10" N/m for 50 Myr old slab




Estimates of the Major Plate-Driving Forces

Ridge Push
Slab Pull

Fy

Fm

h

2 X 10'2 N/m
2 X 1013 N/m

Turcotte & Schubert [2002]

Basal Tractions ,

Fgr = Integrated Shear Stress Beneath Plate
74 (1 Ocm/ yr
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Fsp ~ (2MPa)(5000km) =1x10" N/m
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Estimates of the Major Plate-Driving Forces

Ridge Push

Fy

Fm

2 X 10'2 N/m

(much smaller)
Turcotte & Schubert [2002]

Slab Pull

2 X 1013 N/m

Basal Tractions ,

1 X 1073 N/m




Plate Motions:
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Surface
Plate Motions
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Observed Plate
Motions
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Observation:  Subducting Plate Speeds _

3.5
Overriding Plate Speeds

Hypothesis 1:  Slab pull speeds up the
subducting plates

Hypothesis 2:  Larger basal traction slows down the
overriding plates



Slab Pull

estimated from the
Lallemand et al.
[2005] dataset.
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5x 103 N/m
Slab Pull Force

Hypothesis 1:  Slab pull speeds up the
subducting plates



How large is the slab pull force?

Maximum pull from slabs: Differential St (MPa)
' S ifferentia ress (MPa
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Weakening?
Kohlstedt et al. [1995]



Basal Tractions

Compute from
Global Mantle
Circulation
Models
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Basal Tractions
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Hypothesis 2:  Larger basal traction slows down the
overriding plates



Basal Tractions
depend on
lithosphere
thickness
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Basal Tractions

depend on

lithosphere

thickness Ratio of Traction Magnitudes
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Ratio (Lateral Visc. / Layered Visc.)

Conrad & Lithgow-Bertelloni [2006]



The link between plate motions and
mantle flow depends on rheology

1. Coupling of the slabs to the subducting plates
— Depends on slab strength

2. Coupling of mantle flow to the surface plates
— Depends on viscosity beneath the plates

Problem: Neither is well constrained!

Plate Motion
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Torque Balance

Driving Torques Q,.

Plate 1 Plate 2

_"it'
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Resisting Torques M, @,

Plate 1 )y | Plate 2

F = 0

C -

Predict Plate Motions

Torque Balance Approach
[Lithgow-Bertelloni & Richards, 1998]

Compute the driving forces for
each plate:

Four  Slab Pull Force
Fiow  Basal Tractions (from flow)

Apply to each plate to obtain the
torques Q

Plate motions are determined by
a torque balance:

_ 1
w; = Mij (Qflow + qun),.
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Plate velocity ratio = 3.5 Slab pull fraction = 100%

Relative Velocity Magnitude Piate vel. ratio: 3.2 Misfit: 0.23
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Plate velocity ratio =

3.5

Relative Velocity Magnitude piate vel. ratio: 3.2 Misfit: 0.23
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Plate velocity ratio = 3.5

Relative Velocity Magnitude Ppjate vel. ratio = 3.6 Misfit = 0.21
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Plate velocity ratio =
Relative Velocity Magnitude
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Which model works best?
Assume upper mantle viscosity: 3-6 X 10%° Ps s

Vsubd/Vnon-subd, = 3-4

V.. =3.7cmr Plate velocity Magnitude lemyn| INO Asthenosphere: Too Fast

(c) Shallow Continental Roots

", T, N

Shallow Roots: About Right Deep Roots: Too Slow

van Summeren et al. [2012]



The Major Plate-Driving Forces:

1. Slab Pull: Slabs are partially coupled to plates
(about 50% of upper mantle slab weight)
=>» speeds the subducting plates

2. Basal Tractions: Plates motions are coupled to mantle flow,
but through a low-viscosity asthenosphere
=» partly decouples cratons from flow

Plate Motions

Low-Viscosity Asthenosphere




Plate Tectonic Reconstruction [Torsvik et al., 2010]
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Plate motions are intimately
linked with mantle flow.
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Can we understand the time-dependence of tectonics?

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Age of Oceanic Lithosphere [m.y.]

Seton et al. [2012]



Characterizing Lithosphere Deformation
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Dots: GPS stations Strain Rate Model: Kreemer et al, [2014]
White: 50 assumed rigid plates Grey: diffuse deformation



Characterizing Lithosphere Deformation
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Strain Rate Model: Kreemer et al, [2014]
Wide areas of slow deformation - atypical plate tectonics



Characterizing Lithosphere Deformation
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Style of Deformation
- Relates to underlying stresses




Plate Motion C. Oceanic
= <= Lithosphere =

Low-Viscosity
Asthenosphere

Can observe lithospheric stresses directly?

Stresses are generated by:
—> Tractions from mantle flow
- Stresses transmitted elastically within the plates
- Topography

Observations are from:
- Borehole breakouts - Hydro-fractures
- Seismic focal mechanisms - Geologic indicators
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Observations of lithospheric stresses
What causes these variations?
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Characterizing Asthenospheric Flow

(a) Couette Flow (CF) (b) Poiseuille Flow (PF)

PFnl flow: Newtonian rheology (n=1) PFn3 flow: Power-law rheclogy (n=3)

Couette Flow:

Shear deformation Poiseuille Flow:

between the plate Driven by pressure gradients between
and the mantle different locations in the mantle.
below

Ramirez et al. [EPSL, 2023]



Characterizing Asthenospheric Flow

(a) Couette Flow (CF)

Plate motion

 Pressure gradient

Effect of rheology,
grain-size, water
content, etc

(b) Poiseuille Flow (PF)

PFnl flow: Newtonion rheology (n=1)

(c) Link between flow configuration, viscosity and seismic structures

Covuette flow
Rheology

~ Poiseuille flow

Stress
Grain size
Temperature
Melt
Woater content
Pressure

feedback

PFn3 flow: Power-low rheology (n=3)

In the oceanic asthenosphere:

Low-velocity zone (LVZ)

Geophys.it.‘d Low seismic Q
observafions High seismic anisotropy
—9. * .
S, Low-viscosity zone
S %
i S

Shear deformation
Grain-size variation

Ramirez et al. [EPSL, 2023]



Flow Velocity

—> driven by
plate motions
and pressure
gradients

Olivine

Grain Size

- deformation
reduces
grain size

Effective

Viscosity

- smaller
grains lead
to smaller
viscosity

Characterizing Asthenospheric Flow
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Characterizing Asthenospheric Flow

- Is Poiseuille Flow Necessary to Explain Seismic Observations?

PREDICTED SEISMIC DEPTH PROFILES ‘ OBSERVATIONS ‘
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Characterizing Asthenospheric Flow

The “super-weak” asthenosphere
Becker [Gcubed, 2017]

b) shallow, sub-oceanic asthenosphere
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For global tectonics,
asthenosphere viscosity
makes a difference...

“‘Super-weak”
viscosity in the
asthenosphere:
Viscosity reduced
by a factor of 100 -

c) surface velocities, slabs and upper mantle anomalies
r, = 0.916
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e) surface velocities, slabs, upper mantle, low viscosity
r, = 0.910

— ) |V] [omyr]

Becker [Gcubed, 2017]
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Conclusions

-> Plates motions are driven mostly by:
e Slab Pull

 Mantle Flow (via basal tractions on plates)
-> Plates and mantle are linked through the asthenosphere.

Questions:
* What is the viscosity of the asthenosphere?
* How rigid are the plates?
* What are the flow patterns in the asthenosphere?

Plate Motion C. Oceanic
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