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Gravity, the Geoid, and Mantle Dynamics

Lecture: Gravity and the Geoid

Earth's Gravity Field Anomalies {milligals)
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Gravitational Potential

For a point mass:

mM

2
7

Newton’s law of gravitation: ~ F =mi=-G

Then the acceleration due to gravity is: g = _G%z [

The gravitational potential Uy is the potential energy per unit mass in a
ravitational field. Thus:
sty ° mdU , = -Fdr =-mgdr

Then the gravitational acceleration is: g=-VU =- i,i,i U
ox dy 0z
The gravitational potential is given by: U c= -G—
r
For a distribution of mass: M

Everywhere outside a sphere of mass M: Usg=-G—
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Centrifugal Potential
For a rotating body such as Earth, a portion of gravitational self-attraction
drives a centripetal acceleration toward the center of the Earth. When viewed in

the frame of the rotating body, the body experiences a centrifugal acceleration

away from the Earth’s axis of rotation. < | Bo
aC
Angular velocity: w= 2—? =Y where x=rsing X
X
v? G

Centrifugal acceleration: a, = w’x = —
X

But &, = -VU,, so we can calculate the

centrifugal potential by integrating:

Figure of the Earth
Earth’s actual surface is an equipotential surface (sea level), a surface for which
U; + U, = constant. The figure of the Earth a smooth surface that approximates
this shape and upon which more complicated topography can be represented.
The earth approximates an oblate spheroid, which means it is elliptically-shaped
with a longer equatorial radius than a polar radius.

The flattening (or oblateness) is
the ratio of the difference in

radii to the equatorial radius:

a-b
a

f=

@
S
2
g

For earth, /=0.00335287, or 1/298.252, and

the difference in the polar and equatorial radii is about 21 km.
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The International Reference Ellipsoid is an ellipsoid with dimensions:

Equatorial Radius: a=6378.136 km

Polar Radius €c=6356.751 km
Radius of Equivalent Sphere: R=6371.000 km
Flattening f=1/298.252
Acceleration Ratio m= :—z = wzaz =1/288.901
Moment of Inertia Ratio H= CC_:—A =1/305.457

The gravitational potential of the Earth (the geopotential) is given by:

2
U, Uyt arrsivo--CM G oo 390501\ 1 226
g 2 PR 2 2

where 8 = colatitude (angle measured from the north pole, or 90-latitude).

The geopotential is a constant (U,) everywhere on the reference ellipsoid.

Gravity on the Reference Ellipsoid
To first order: r = a(1—fsin2 A)

Geocentric latitude = A

(measured from center of mass)

Geographic latitude = 2,

(in common use)

To first order: sin? A = sin’ A, - fsin® 24,

The acceleration of gravity on the reference ellipsoid is given by:  g= —?Ug

Performing this differentiation gives:
g= 9.780327[1 +0.0053024 sin” A4 +0.0000059 sin® ZAQ]

Equatorial gravity is: 9.=9.780327 m/s?
Polar gravity is: 9,=9.832186 m/s?
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Gravity on the ellipsoid:

The poleward increase in gravity is 5186 mgal, and thus only about 0.5% of
the absolute value.
(gravity is typically measured in units of mgal = 10-3 m/s?).

Gravity decreases toward to pole because :
(1) The pole is closer to the center of Earth than the equator (~6600 mgal)
(2) The pole does not experience centrifugal acceleration (~3375 mgal)

These are countered by:

(3) The equator has more mass because of the bulge, which increases
equatorial gravity (~4800 mgal)

Together these three affects yield the 5186 mgal difference.

Earth’s Surface

Geocentrilc Ellipg, oy Geoid

i Equator

i

eo,-d
ithometric lipsoidal Height eo0id
ceans Orth i Ellipsoidal Heigh Geoid
Height from GPS Height

The geoid is the equipotential surface that defines sea level, and is
expressed relative to the reference ellipsoid.




Deflections of the geoid away from the reference ellipsoid are caused by
by lateral variations in the internal densities of the Earth.

Temporal variations in the geoid are caused by changes in distribution of
masses (primarily hydrological) upon the surface of the Earth.

sea surface

Mass excess (either subsurface

excess density or positive

topography) deflects the geoid
upwards. sea floor

200 km {

——

10m

2km

Spherical Harmonics

The geoid (and any function on a sphere) can be expressed in terms of spherical
harmonics of degree n and order m: Y™ = (a,T cosmeg + b sinm¢)P,,’"(cos(9)

we @) Qo QP D
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The power spectrum of the 24
geoid is given by: 1_“
P, = (a,+b,
n mzo( nm nm) 5 0-
. =
The dominance of the g -1-
. . =
low-harmonic degrees in & o
O
the geoid power spectrum ; .
indicate that the dominant
_4—
shape of the geoid is controlled
by structures deep within the - 5 « 6 810 20 0

HARMONIC DEGREE
mantle.

Observed Geoid (EGM96)

Observed Geoid (EGM96, degrees 4-25)
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Water mass changes inferred from geoid movements 2003-2009
(as measured from the GRACE satellite)

Measurement of Absolute Gravity:

Pendulum Method: Measure the period T = 27, ! =2”\F
mgh g

To measure 1 mgal variation, the period must be measured to within Tus.

Free-fall Method: Measure the fall of a mass: z =z, +ut + gt*/2
To measure 1 ugal variation, time must be measured to within 1ns.

Rise-and-fall Method: Measure time T for a thrown ball to rise and fall a

8lz,-z
height z: z = g(T/2)2/2. Then g= 2 2). ugal precision; not portable.

(re-7.)

peint of suspension
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BALL RELEASE MECHANISM
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Adjusting screw

Light beam
to indicate
null position

Measurement of Relative Gravity:

Stable Gravimeter: Measure As, the
change in a spring’s length: Ag=—As
m

Unstable Gravimeter: Use a spring with

built-in tension, so: Ag = ES

—~—
S

(LaCost-Romberg gravimeter)

Usage: Adjust the spring length to zero
using a calibrated screw. Hinge
i
. T
mg+3g)

Sensitivity: 0.01 mgal for a portable device
Superconducting Gravimeter: Suspend a niobium sphere in a

stable magnetic field of variable strength. Sensitivity: 1 ngal

Gravity Corrections:
Many lateral and temporal variations in gravity can be predicted, and

Drift Correction: In relative gravity surveys, instrument drift can be corrected

by making periodic measurements at a base station with known gravity.

Tidal Correction: Gravity changes during the day due to the tides in a known
way. Tidal corrections can be computed precisely if time is known. For

example, if the moon is directly overhead, the tidal correction would be:
Ag; = GMZL This should be added to measured gravity.

A

2
ﬁ+3(&) +o
rL rL

E6tvos Correction: Moving eastward at v,, your angular velocity increases by:
Aw= VE/(RE cosA). This change increases the centrigugal acceleration:

Ve )= 2wv,.. Downward gravity changes by

Aa. = dag Aw = (ZwRE cos A)
d RgcosA

w
Ag =-2wvgcosA. The Ebtvds effect decreases gravity when moving east.

thus removed from a gravity survey to isolate the “interesting” variations.
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Gravity Corrections:
Many lateral and temporal variations in gravity can be predicted, and

thus removed from a gravity survey to isolate the “interesting” variations.

Latitude Correction: Absolute gravity is corrected by subtracting normal
gravity on the reference ellipsoid: g, = ge(1+/51sin2 A+ B, sin® ZA)

where g, = 9.780327 m/s?, f, =5.30244x10°, and f, =-5.8x107.
Relative gravity is corrected by differentiating g, with respect to A:
Ag,, = 0.8140sin2A mgal per km north-south displacement. This correction

is subtracted from stations closer to the pole than the base station.

Gravity Corrections:
Many lateral and temporal variations in gravity can be predicted, and

thus removed from a gravity survey to isolate the “interesting” variations.

Terrain Correction: Nearby topography perturbs gravity measurements
upward due to mass mass excess above the station (nearby
hills) or due to mass deficiency below the station (nearby valleys). The

terrain correction is computed using:
Ag = G(dmcos@)/(r2 +zz)

where rand z are the horizontal and
vertical distances to dm, and 6 is the
angle to the vertical. The terrain

correction is always positive.

Integrating over a sector gives:

AgT=Gp¢((\/r2+h2-q)-(\/rz+h2-rz)) \/_'2_‘

r, and r, are the inner and out radii, his the height, ¢ is the sector angle.
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Gravity Corrections:
Many lateral and temporal variations in gravity can be predicted, and
thus removed from a gravity survey to isolate the “interesting” variations.

Bouguer Plate Correction: This correction compensates for a rock layer of

thickness h between the measurement elevation level and the reference
level. For a solid disk of density p and radius r, the terrain correction is:
Ag; = ZJTGp(h—(\/I‘Z -k - r)) Allowing r to become infinite, we obtain:
Aggp = 27Gph = 0.0419x 107 p mgal/m if p is in kg/m3.

This correction must be subtracted, unless the station is below sea level

in which case a layer of

rock must be added to 1. Drop to h  2.remove
ellipsoid—Ag;, layer—Ag,,

reach the reference level. =~~~ TTTTTTTTTTTTTTTTT

For gravity measured over water, water must be replaced with rock
by assigning a slab with density (. - Puer)-

Gravity Corrections:
Many lateral and temporal variations in gravity can be predicted, and
thus removed from a gravity survey to isolate the “interesting” variations.

Free-air Correction: This correction compensates for gravity’s decrease with

distance from the Earth’s surface. It is determined by differentiating g:
2

d M M
AGg, = E(_GTZE) = +ZGr—3E = —FQ =0.3086 mgal/m

This correction must be added (for stations above sea level).

Combined Correction: Free air and Bouguer corrections are often combined:

Ay, + Adgp = (0.3086 - 0.0419p x 10°) mgalim = 0.197 mgalim

assuming a crustal density of 2670 kg/m3. To obtain 0.01 mgal accuracy:
-- location must be known to within 10 m (for latitude correction)

-- elevation must be known to within 5 cm (for combined correction)
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Gravity Anomalies
After the appropriate corrections are applied, gravity data reveal information
subsurface density heterogeneity. How should they be interpreted?

Gravity over a Uniform Sphere 1.0 [gz/gzmax]

Gravity for a sphere is the same as Cylinder
for a point mass. The z-component:

Ag, = Agsin = GMZE where 1
rrr

M= %’R%p and r?=2z%*+x* giving:

ag, - drg[MR°Y 2 )"
3 722 \Z2+x?
The maximum is at x=0, where:

3
Agzmax = 4_HG[APR )
3 z

Rule of thumb: z=0.65w where w is the width at half height of the anomaly.

Gravity Anomalies
After the appropriate corrections are applied, gravity data reveal information
subsurface density heterogeneity. How should they be interpreted?

Gravity over a Semi-Infinite Horizontal Sheet

A horizontally truncated thin sheet can (a) anomaly

be used to approximate a bedded
Ag 4
formation offset by a fault. If the fault is %,

"

centered at x=0, z,=0, then the gravity

0

anomaly is: Ag, = 26Aph(%+tan‘1(i)] :
Z -10 -5 0x,, 5 10km

Rule of thumb: zy~x; ,,~X3,, ult
Where x,,, and x,,, are the positions where () structure —
the gravity anomaly is ¥4 and % its max value. e et
Note that as x—, Ag, = 2GAph, which is the boososeoncrosnsos: AR it
solution for a Bouguer Plate anomaly. ‘

(c) model xml e

Ap = 400 kg i
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Isostasy

Long wavelength variations in topography are isostatically compensated
at depth. This means that the excess mass in positive topography is
compensated by a mass deficiency at depth.

Airy Isostasy:

Lateral variations in crustal thickness allow surface topography to be
compensated by a deep crustal root. The thickness of this root is determined by
requiring the mass in columns above the compensation depth (C) to be equal:

r= Pe h, or, if the topography is under water, r,= Mm

Pm = P Pm = Pe¢

Isostasy

Long wavelength variations in topography are isostatically compensated
at depth. This means that the excess mass in positive topography is
compensated by a mass deficiency at depth.

Ps

Pratt Isostasy:
Lateral variations in crustal density compensate topography, so again the mass

in columns above the compensation depth (C) are equal. The density is:

D p. or, if the column is a depth d under water, p, = pL=-p,d
h,+D D-d

Oy =

10/17/14
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Isostasy

Long wavelength variations in topography are isostatically compensated

at depth. This means that the excess mass in positive topography is
compensated by a mass deficiency at depth.

Vening Meinesz Isostasy:
In this type of isostasy,
short-wavelength topography
is supported by the elastic
strength of the crustal

rocks. The load is instead
distributed by the bent plate

over a broad area. This

distributed load is compensated.

topographic
h .~ loading

regional compensation
(Vening Meinesz)

local compensation
(Airy)

Gravity Anomalies over Topography

Uncompensated topography (Short-wavelengths)

Free-air anomaly (apply the free-air correction only):

Ag+Ag:, >> 0 because of the topography’s excess mass

Bouguer anomaly (apply both free-air and Bouguer plate corrections):

AG+AGA-Ags, ~ O because Bouguer corrects for excess mass.

Compensated topography (Long-wavelengths)

Free-air anomaly (apply the free-air correction only):

Ag+Ag:, ~ O because topography is compensated (no excess mass)
Bouguer anomaly (apply both free-air and Bouguer plate corrections):

AG+AGeA-Agg << O because Bouguer removes additional mass.

Undercompenstated topography: A too-shallow root, yields Ag+Agg,>0

Overcompensated topography: A too-shallow root, yields Ag+Ag:,<0

10/17/14

13



Free-Air Gravity Anomalies (global)

Gravity anomalies
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